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Abstract—Non-Intrusive Load Monitoring (NILM) provides
detailed information on the consumption of individual appliances
in a building and represents an effective method to reduce
the electricity consumed in the residential sector. Supervised
Deep Learning approaches have achieved the state-of-the-art
for NILM but require knowledge of strongly labeled data, i.e.,
annotated at the sample level. This data is costly to obtain since
it requires multiple sensors to measure electrical quantities and
the involvement of the end-users.

This work proposes a Multiple Instance Regression approach
to NILM using a Convolutional Recurrent Neural Network
(CRNN) to reduce the amount of strongly labeled data required
for training and improve performance. Instances of strongly
labeled data are here represented by raw samples of active power
and are aggregated into bags containing weak information rep-
resented by the average power consumption in a bag. Using this
information, the network is trained to disaggregate appliances’
power profiles with sample resolution. The results obtained on
the UK-DALE dataset demonstrated the approach’s effectiveness
in reducing the labeling cost and improving the performance:
the average Mean Absolute Error reduces by 3.06 W when weak
information is used in the CRNN and by 8.88 W compared to
the Sequence-to-Point method.

Index Terms—Non-Intrusive Load Monitoring, Electrical Load
Disaggregation, Weak Supervision, Deep Learning.

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) [1] was proposed
by Hart in 1980 to extract appliance consumption profiles
from the knowledge of the aggregate measurements. This way,
instead of individually monitoring each appliance inside a
building, the number of sensors for measuring their active
power is reduced to one. NILM is very effective in supporting
energy-saving since it provides detailed knowledge of load
power consumption to end-users. In [2], it has been reported
that real-time and appliance-level consumption feedback leads
to a reduction of energy consumption up to 12%.

NILM is based on advanced algorithms for extracting
detailed consumption information. During the last decades,
Signal Processing [3], [4], Single-Channel Source Separation
[5], and Machine Learning (ML) [6]–[12] techniques have
been largely employed for this task. ML-based approaches,
particularly Deep Neural Networks, have proven to be the
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most effective and have reached the state-of-the-art. For load
disaggregation, i.e., direct estimation of the appliance active
power, these approaches are based on fully supervised learn-
ing [7]–[13]. Kelly et al. [7] firstly proposed three different
architectures to estimate the appliance power consumption
from sequences of aggregate samples. In [8], the sequence-
to-point approach, based on a Convolutional Neural Network
(CNN), has been proposed by training the network to estimate
the middle point of the target window. Recently, in [9],
a Variational Auto-Encoder has been presented to improve
multi-state appliance disaggregation generalization capability.
Piccialli et al. [13] proposed a double-branched architecture,
one for regression, with an attention mechanism, and one for
classification. The network is trained by minimizing the sum
of the two losses on the target sequence. Also, Laouali et
al. [10] proposed a double-branched approach exploiting the
active and reactive aggregate power and the ApproxHull data
selection strategy. Recently, in [11], a CNN and a Long Short
Term Memory network have been proposed with the attention
mechanism, improving the disaggregation for complex-state
devices. Nalmpantis et al. [12] proposed a Neural Fourier
Energy Disaggregation approach to reduce the complexity of
the network while keeping the performance unchanged.

The described methods are based on fully or strongly
supervised learning strategies that require the knowledge of a
large quantity of aggregate and appliance-level measurements
annotated sample by sample. Labeling is a monetary and
human costly procedure in NILM due to the electrical sensors
required to record individual appliance consumption and the
end-user involvement during the acquisition phase. Unlike
strongly supervised methods, weak supervision refers to the
learning strategies that do not need complete knowledge of
data [14]. For example, Semi-Supervised Learning consists in
learning with incomplete supervision since it employs unla-
beled data. In contrast, Multiple Instance Learning [15] and
Multiple Instance Regression (MIR) [16] consist in learning
with inexact supervision since they use coarse-grained infor-
mation as ground-truth data. Up to the authors’ knowledge,
weak supervision has been proposed in the classification task
to estimate the states of the appliances exploiting unlabeled
data [17], [18] while it has never been employed to estimate
the appliance’s active power.

In this work, we propose a MIR approach to electrical load
disaggregation. Generally, in MIR, the objective is learning
to predict multiple real-valued variables by using weak labels
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for training. Here, real-valued variables are samples of the
active power of an appliance and represent strong labels. In
contrast, a weak label is the average value of a segment of
appliance’s active power values. Referring to the MIR termi-
nology, samples here represent the instances, and segments
represent bags. The proposed method employs both weak
and strong labels to train a Convolutional Recurrent Neural
Network (CRNN) to perform load disaggregation. NILM, thus,
is modeled as a MIR problem, and we exploit the presence of
weakly labeled data to reduce the quantity of strongly labeled
data required in fully supervised approaches and improve the
performance. The UK-DALE dataset [19] has been used to
perform the experiments and prove the effectiveness of the
method. The experiments have been conducted by varying
the composition of the training dataset, each time changing
the amount of strongly labeled data while keeping fixed the
quantity of weakly labeled data. The proposed method has
been compared to a CRNN trained only on strongly labeled
data (CRNN-Strong) and to the Sequence-to-Point network
(Seq2Point) presented in [8]. The obtained results demonstrate
the increased generalization ability on unseen conditions and
the reduction of disaggregation error provided by the proposed
method compared to the fully supervised strategy. The most
significant improvements have been obtained when the amount
of strongly labeled data is lower than the amount of weakly
labeled data. The obtained results allow concluding that the
proposed method is able to achieve superior performance with
respect to the comparative algorithms using a significantly
lower amount of strongly labeled data and exploiting weak
labels, i.e., coarser information that requires significantly
less effort for annotation. Up to our knowledge, this is the
first work in which electrical load disaggregation has been
addressed by using weak supervision and MIR.

The outline of the paper is the following. Section II defines
the load disaggregation problem and explains in detail the
proposed method; Section III describes the experimental setup
and presents the obtained results. Finally, Section IV concludes
the paper and presents future works.

II. PROPOSED METHOD

The total active power consumption of a building is given
by the sum of the individual active powers consumed by all
the appliances inside it, and it can be expressed as follows:

y(t) =

N∑
n=1

xn(t) + e(t), (1)

where xn(t) represents the active power of appliance n at the
instant t, N is the total number of the appliances, and e(t)
indicates the measurement noise and the contribution of the
appliances whose consumption is not of interest.

Load disaggregation aims at extracting the active power
consumption profile of a specific appliance n, given only
the power reading of the mains y(t). In this framework,
load disaggregation is formulated as a denoising task, as in
several previous works on the topic [7], [20]. Considering the

active power of appliance n̄, equation (1) can be expressed
alternatively as:

y(t) = xn̄(t) + vn̄(t), vn̄(t) =

N∑
n=1
n ̸=n̄

xn(t) + e(t). (2)

where vn̄(t) represents the total noise term for appliance n̄.
In this formulation, load disaggregation consists in removing
the noise contribution vn̄(t) from y(t) for each appliance.

The proposed method addresses load disaggregation as a
MIR problem and uses a CRNN for denoising. Based on MIR,
the individual samples of the signals are instances that are
grouped into bags. Each bag is represented by a real-valued
label based on the values of the instances contained in it. Since
the information carried by bag target values is coarse, they are
also referred to as weak while, in contrast, instance labels are
also referred to as strong because of their higher information
resolution.

In the proposed framework, instances are represented by
samples of power reading of the mains y(t). To introduce the
concept of a bag of instances, we divide y(t) into windows
of fixed length L and overlapped by P < L samples, and we
define a bag j as the j-th window of y(t) as follows:

yj = [y(j(L− P )), . . . , y(j(L− P ) + L− 1)]T . (3)

Omitting n for simplicity of notation, the strong labels for bag
yj of a generic appliance are represented by the ground-truth
data xj = [x(j(L− P )), . . . , x(j(L− P ) + L− 1)]T .

The weak label of a bag depends on the strong labels of the
instances within the bag itself. Generally, the weak label is
obtained from the instance labels by using a pooling function.
Several alternatives have been proposed in the literature for
classification and regression [15]. In this work, the weak label
wj related to bag yj and a generic appliance is a scalar
quantity calculated as the arithmetic average of the instance
labels:

wj =
1

L

L−1∑
l=0

xn(j(L− P ) + l). (4)

With the above definitions, it is possible to formulate load
disaggregation using MIR more formally. Denoting with

T = {(y1, w1,x1), . . . , (yM , wM ,xM ),

(yM+1, wM+1), . . . , (yM+K , wM+K)} , (5)

a set of M +K bags, in which M are annotated with strong
and weak labels and K only with weak labels, the goal is to
learn a mapping function f : RL → RL from T for estimating
the active power x of an appliance given a bag of unknown
aggregate power y. The mapping function f(·) is represented
by a CRNN, described in the following section.

A. Neural Network Architecture

As previously stated, we address load disaggregation by
using a CRNN [21]. Specifically, we train a different CRNN
for each appliance of interest. The network takes a bag y of
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Fig. 1. The proposed architecture.

aggregate power as input and has two outputs: a strong-level
output and a weak-level output. The first provides an estimate
of the active power x̂. Supposing that L is odd, and P is even,
since the aggregate signal is processed in partially overlapped
windows and y and x̂ are of the same length L, we retain
only the L−P central values of the output. The entire output
sequence is reconstructed by joining the individual output
segments. The weak-level output is represented by the average
of the instance-level predictions, consistently with equation
(4).

The network contains H convolutional blocks, where each
of them includes: a 2D convolutional layer with F filters and
kernel size K, a layer for batch normalization, an activation
layer that exploits the Rectified Linear Unit activation function,
a max-pooling layer, and a dropout layer with rate p. The
output of the convolutional blocks is connected to the recurrent
part of the CRNN, which is represented by a Bidirectional
layer of U Gated Recurrent Units (GRU). The last layer is
a Fully-Connected Layer with a linear activation function
for generating the strong-level predictions associated with the
input window. The strong-level output is further processed
by an average pooling layer, followed by a linear activation
function in order to generate the weak-level prediction. The
CRNN architecture proposed in this paper is depicted in Fig. 1.

B. Learning

Given a set of annotated bags T , the network is trained
by using a loss L = Ls + λLw given by the weighted sum
of the loss associated with the strong-level output Ls, and
the one related to the weak-level output Lw. The term λ is a
weight that balances the contribution of the two losses. Both
Ls and Lw are calculated as the Mean Squared Error between
the related prediction and the target. Considering a mini-batch
containing J bags and a generic appliance, the two losses are
calculated as follows:

Ls =
1

J · L

J−1∑
j=0

L−1∑
l=0

[x(j(L− P ) + l)− x̂(j(L− P ) + l)]
2
,

(6)

Lw =
1

J

J−1∑
j=0

(wj − ŵj)
2
. (7)

III. EXPERIMENTS

This section describes the experiments conducted to evalu-
ate the proposed method.

A. Datasets

The experiments have been carried out by using the UK-
DALE dataset [19]. It is a publicly available dataset that
contains data related to five different houses in the UK, where
aggregate power is sampled at 1 Hz, while appliance-level
measurements at 1/6 Hz. The appliances considered in the
experiments are Microwave (MW), Fridge (FR), Dishwasher
(DW), Washing Machine (WM), and Kettle (KE). All houses
were included but, for houses 3 and 4, only Kettle and Fridge
were considered. The periods considered for each house are
2013/04/12-2015/01/05 for house 1, 2013/05/22-2013/10/10
for house 2, 2013/02/27-2013/04/08 for house 3, 2013/03/09-
2013/10/01 for house 4, and 2014/06/29-2014/11/13 for house
5.

B. Evaluation metrics

The metrics used to evaluate the performance of the method
are the Mean Absolute Error (MAE) and the Normalized Error
in assigned Power (NEP) [22]. Both metrics are calculated for
each appliance individually. MAE and NEP are defined as:

MAE =
1

T

T∑
t=1

|x(t)− x̂(t)| , NEP = T · MAE∑T
t=1 x(t)

, (8)

where x̂(t) is the power predicted by the network, x(t) is
the corresponding ground-truth value, and T is the number of
samples of the segment under evaluation. Basically, NEP is the
MAE normalized by the total appliance’s energy consumption,
and it allows to evaluate the importance of the error based on
the appliance operating characteristics.

C. Experimental procedure

We downsampled the aggregate active power to 6 s and we
aligned it to the appliance readings using NILMTK [22]. Weak
ground-truth labels have been created by using equation (4).
The experiments have been conducted on an unseen scenario,
using house 2 data only for testing and data of the other houses
to train and validate the model. For each appliance, we first
divided the original dataset into training (1,200,000 samples),
validation (150,000 samples), and testing sets (2,100,000 for
Kettle and 1,700,000 samples for the other appliances).

Evaluation has been conducted in multiple training con-
ditions, each characterized by a different amount of strong
labels. We considered two extreme situations, one where the
amount of strong labels is very scarce, i.e., 5% the number
of strong labels in the training set, and one where it is
large, i.e., 100% the amount in the training set. Moreover, we
considered three intermediate values, 20%, 40%, and 80%,
thus each time doubling the amount of strong labels for
training. The number of weak labels, on the other hand, is
always the same. For each appliance and training condition, we
standardized the aggregate signal by using mean and standard
deviation calculated from the training set and applied min-max
normalization to the target values.

For each training condition, we also evaluated the perfor-
mance of the Sequence-to-Point network proposed in [8], and
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of the same CRNN network depicted in Fig. 1 but without the
bag-level output. Thus, training has been performed only on
strong labels in these cases.

Both for the proposed and the comparative methods, we
trained a different network for each appliance of interest by
setting the maximum number of epochs to 1000 and using the
Early-Stopping regularization technique with patience equal to
15 epochs. During the learning process, we used the Adaptive
Moment Estimation optimizer [23], with a learning rate equal
to 0.001, β1 and β2 equal to 0.9 and 0.999, respectively, and
ϵ equal to 10−7. The loss weight λ has been set to 1. Training
has been performed in mini-batches, where the batch size
has been determined on the validation set. The length L of
the window is different for each appliance, and it has been
determined by evaluating the performance on the validation
set of the values reported in [8], [20]. The determined values
are 289 for Microwave, 1025 for Washing Machine, and 599
for Fridge, Dishwasher, and Kettle. Differently, the amount of
overlap P is equal for all the appliances and has been set to
(L− 1). This means that for each input bag, only the central
value of the output is retained.

All the methods have been implemented in Python using
Tensorflow and Keras [24].

D. Results

The results obtained for each appliance and training condi-
tion are reported in Table II. The proposed method is indicated
with “Proposed”, the CRNN trained only with strong labels
with “CRNN-Strong”, while the Sequence-to-Point network
with “Seq2Point”.

The obtained results show that regardless of the percent-
age of strongly labeled data used for training, the proposed
method based on weak labels is able to outperform the
comparative algorithms. Compared to CRNN-Strong, MAE
reduces by 3.06 W on average, while compared to Seq2Point
by 8.88 W. Similarly, NEP reduces by 9.97 percentage points
(pp) compared to CRNN-Strong and by 30.59 pp compared to
Seq2Point.

Observing the performance for the different percentages of
strong labels, the most remarkable improvement occurs when
the percentage of strongly labeled data is low, i.e., 5%, 20%,
and 40%, both when the proposed method is compared to
CRNN-Strong and when it is compared to Seq2Point. This
behavior confirms that weak labels contribute the most to
improving the performance when the amount of strongly la-
beled data is scarce compared to weakly labeled data. Another
remarkable advantage of the proposed method is the reduction

TABLE I
CRNN HYPERPARAMETERS.

Hyperparameter Symbol Value
Number of convolutional blocks H 3
Number of filters F [32, 64, 128]
Kernel size K 5
Number of GRU units U 64
Dropout rate p 0.1

TABLE II
RESULTS OBTAINED FOR THE DIFFERENT TRAINING CONDITIONS AND

ADDRESSED METHODS. BEST RESULTS FOR EACH APPLIANCE AND
PERCENTAGE OF STRONG LABELS ARE REPORTED IN BOLD.

% Appliance
Strong Model Metric MW FR DW WM KE Average

Proposed MAE (W) 11.17 49.89 20.55 10.93 12.57 21.02
NEP (%) 113.82 59.69 48.98 70.56 42.52 67.11

5% CRNN-Strong MAE (W) 11.38 50.04 32.13 12.05 13.46 23.81
NEP (%) 115.95 59.86 76.57 77.78 45.53 75.14

Seq2Point MAE (W) 15.31 66.07 48.96 14.45 28.72 34.70
NEP (%) 155.92 79.05 116.69 93.23 97.14 108.41

Proposed MAE (W) 8.16 46.93 20.08 11.44 12.37 19.80
NEP (%) 83.10 56.15 47.86 73.82 41.84 60.55

20% CRNN-Strong MAE (W) 8.32 47.16 37.28 12.65 14.96 24.07
NEP (%) 84.75 56.42 88.85 81.65 50.59 72.45

Seq2Point MAE (W) 11.15 66.15 31.57 12.99 29.01 30.17
NEP (%) 113.54 79.14 75.24 83.83 98.12 89.97

Proposed MAE (W) 10.61 48.07 28.12 11.70 11.52 22.00
NEP (%) 108.09 57.52 67.02 75.48 38.97 69.42

40% CRNN-Strong MAE (W) 15.29 53.79 33.33 12.49 12.63 25.51
NEP (%) 155.83 64.35 79.44 80.63 42.71 84.59

Seq2Point MAE (W) 13.09 65.38 46.42 23.00 14.71 32.52
NEP (%) 133.37 78.22 110.63 148.43 49.74 104.08

Proposed MAE (W) 9.90 50.95 26.62 12.19 10.54 22.04
NEP (%) 101.00 60.96 63.45 78.64 35.66 67.94

80% CRNN-Strong MAE (W) 9.55 52.03 33.09 12.53 15.33 24.51
NEP (%) 97.00 62.25 78.86 80.88 51.86 74.17

Seq2Point MAE (W) 17.11 53.98 29.60 14.61 13.17 25.69
NEP (%) 174.23 64.58 70.55 94.28 44.53 89.63

Proposed MAE (W) 10.89 49.97 30.40 13.02 11.82 23.22
NEP (%) 110.96 59.79 72.46 84.02 39.97 73.44

100% CRNN-Strong MAE (W) 12.70 49.90 37.14 12.72 14.85 25.46
NEP (%) 129.34 59.70 88.52 82.12 50.24 81.98

Seq2Point MAE (W) 18.03 65.85 32.18 17.31 13.55 29.38
NEP (%) 183.67 78.79 76.71 111.68 45.84 99.34

Proposed MAE (W) 10.15 49.16 25.15 11.86 11.76 21.62
NEP (%) 103.39 58.82 59.95 76.50 39.79 67.69

Average CRNN-Strong MAE (W) 11.45 50.58 34.59 12.49 14.25 24.67
NEP (%) 116.57 60.52 82.45 80.61 48.19 77.67

Seq2Point MAE (W) 14.94 63.49 37.75 16.47 19.83 30.49
NEP (%) 152.15 75.96 89.96 106.29 67.07 98.29

of strongly labeled data quantity required to obtain the lowest
error. As it can be seen for Microwave, Fridge and Dishwasher,
the lowest error among all the percentages is achieved with
weakly labeled data and when the quantity of strongly labeled
data is only 20% while for Washing Machine only the 5%.

A closer look at the behavior for the different appliances
shows that in the majority of the cases, the performance of the
proposed method is superior to the comparative methods. The
only exceptions are Microwave when the percentage of strong
labels is 80%, and Fridge and Washing Machine when the
percentage is 100%. Note, however, that the MAE difference
is below 0.5 W and that this occurs when the amount of
strongly and weakly labeled data is comparable: in this case,
the influence of weak labels is less, a behavior that could have
been expected.

Fig. 2 shows the ground-truth and the estimated active
power for the proposed and comparative methods when train-
ing is performed with different percentages of strongly labeled
data. The plots confirm the obtained results, as the active
power outputs produced using the proposed method are closer
to the ground-truth.

IV. CONCLUSION AND FUTURE WORKS

This paper presented a load disaggregation method based
on Multiple Instance Regression and a Deep Neural Network
represented by a Convolutional Recurrent Neural Network.
The learning strategy is able to exploit data annotated with
both strong and weak labels thus, it is able to use coarser
annotations that are intrinsically less expensive to obtain.
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(a) Microwave (40%). (b) Fridge (20%).

(c) Dishwasher (20%). (d) Washing Machine (20%).

(e) Kettle (20%).

Fig. 2. Ground-truth and estimated active power for the proposed and
comparative methods for different percentages of strongly labeled data (shown
in brackets).

In the experiments, we evaluated whether the information
carried out by the weak labels is able to provide significant
performance improvements for load disaggregation. The UK-
DALE dataset has been used in the experiments, and different
training conditions with various percentages of strongly la-
beled data and fixed amount of weakly-annotated data have
been considered. The proposed method has been evaluated
in unseen testing conditions, and it has been compared to
two methods: a CRNN architecture missing the capability
to exploit weak labels, and the Sequence-to-Point method
presented in [8]. The experiments showed that the proposed
method provides significant performance improvements, as the
obtained results showed that on average it outperforms the
comparative algorithms. This demonstrated the possibility to
achieve superior performance by using data annotated with
weak labels, that are intrinsically less costly to obtain.

Future developments will address also the possibility to use
weak labels together with transfer learning techniques and
explore different neural network architectures.
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