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Abstract—With the development of intelligent measurement
systems, power grids improved the reliability and efficiency
according to the vast amount of collected information. Machine
learning techniques are increasingly used in smart grids since
they are efficient to deal with the huge amount of collected data
and extract valuable information. The availability of large-scale
data enables the employment of machine learning methods in
various tasks in power grids. However, large-scale deployment of
machine learning model relies on how trustworthy the model is.
While sole pursuit of overall learning performance, may leads
to unfair results. Specifically, the model may unintentionally
discriminate different subgroups. Machine learning models for
smart grids also have fairness concerns. Power consuming users
and buildings with different power consumption patterns may be
treated with different conditions. To mitigate the unfairness, we
propose accuracy parity , equal opportunity and predictive equal-
ity regularizers, which can be used for different classification
tasks in power grids to mitigate the corresponding performance
discrepancy. Experiments on user classification using loading data
show that the regularizers are effective at avoiding disparate
mistreatment and sometimes can benefit the overall performance
with fine tuning weights.

I. INTRODUCTION

With the development of intelligent measurements systems
and smart metering technology, migrating to an electronically
controlled grid has improved the reliability and efficiency.
The evolution of power grids has led to more efficient data
collection process. Machine learning techniques provide an
efficient way to analyze the massive amount of data and
extract valuable information. By analyzing the measurements,
more information can be obtained more accurately: the sta-
tus of the network, the actual detailed load patterns, etc.
Machine learning functionalities bring huge benefits to the
grids and being used in various tasks, including predictions
of consumption[1, 2], fault detection[3], etc.

As decision-making increasingly relies on machine learn-
ing and data, the issue of fairness is receiving increasing
attention. In classical machine learning, when considering
a classification task, the objective is to minimize a loss
function(e.g., cross entropy) that reflects the errors. This
approach is unable to control the distribution of errors across
different subgroups. In recent years, research has pointed out
plenty of evidences that decision making by machine learning
models may unintentionally discriminate different subgroups
and causes unfairness, especially in media and social studies.

∗Work in this paper was partially supported by Google Research Scholar
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In settings such as loan approvals[4] or college admissions[5],
fairness must be carefully taken into account in order to ensure
the absence of discrimination. More and more fairness-aware
machine learning solutions have been proposed[6, 7, 8, 9].
However, the issue of potential bias has not been considered
in power grids.

While development of smart metering technology provides
more convenient data collection, it also leads to potential bias
since more detailed and private data may be revealed. And the
prevalence of smart meters and sensors varies widely among
users or locations. Machine Learning models trained from such
datasets may henceforth inherit the bias in the collected data.
Hence, the goal of the present work is to introduce a novel
fairness-aware framework to eliminate potential bias in power
grid user classification.

The paper is organized as follow: Section II introduces
the problem of high load indication, and proposes the pro-
posed fairness enhancing framework. Section III focuses on
fairness-aware user type identification task. Numerical tests
are presented in Section IV to evaluate the performance of
the proposed schemes. And conclusions are summarized in
Section V.

II. FAIRNESS-AWARE HIGH-LOAD INDICATION

High-load indication task refers to the task of predicting
whether the load of the next time period is high-load state or
not based on current and previous load information, see e.g.,
[10]. Knowing the loading status or behavioral categories of
power consumers can better model the behavior forecast which
is an important task for load balancing. The input information
is the load information of T time frames, including the load
information from now to T − 1 time frames ago. And the
output is the binary indicator y ∈ {0, 1} of high-load status at
time T + 1, where y = 1 indicate high-load status.

Specifically, such task can be viewed as a binary classi-
fication problem, where the objective is to minimize a loss
function that reflects the errors made by the classifier F .
Specifically, the loss function considered in the present work
is the cross-entropy loss

L(θ;D) (1)

=− 1

|D|
∑
x∈D

(y log(F (x; θ))+(1− y) log(1− F (x; θ)))

where x ∈ Rn is the input feature of a data sample and
y ∈ {0, 1} is the ground truth label corresponding to x. In
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high-load indication task, x represents time-series load data
and y represents the load status. θ denotes the parameters of
the classifier that will be trained to minimize the loss function.
F (x; θ) is the output of the classifier which represents the
predicted probability of x being class 1. Because the classifi-
cation is binary, 1− F (x; θ) is the predicted probability of x
being class 0. Such loss is widely used for classification tasks
including but not limited to anomaly detection [11], quality
prediction[12], fault detection [3], or load indication[10][13].

A. Accuracy parity regularizer

Existing frameworks for load indication in power grids
usually focus on how to design the classifier F with lower
error rate, but they are usually bias-oblivious. This will lead
to potential bias in the results. The classification of loading
status is based on their consumption patterns which potentially
have fairness issues due to the sensitive attributes, e.g. building
sizes, geographical locations, user types.

Let z ∈ {1, 0} denote the sensitive attribute, which can
denote, e.g., building size or location. Let d(x) represent the
signed distance between the feature vectors of samples and
the classifier decision boundary [7]. The covariance between
the sensitive attributes z and d(x) can be written as

Cov(z, d(x)) = E[(z − z̄)g(y,x)]− E[(z − z̄)]ḡ(y,x)

≈ 1

|D|
∑

(x,y,z)∈D

(z − z̄)g(y,x) (2)

where z̄ and ḡ(y,x) denote the average of the value z and
g(y,x) for all data samples in D, g(y,x) := max(0, ( 12 −
y)d(x)), E[(z− z̄)]ḡ(y,x) = 0 since E[(z− z̄)] = 0. In neural
networks for binary classification, the final decision is based
on the output of last linear layer, denoted as f(x). The final
output of the classifier F (x) is obtained as the output of the
last logistic activation function with input f(x). Hence, ŷ = 1
if f(x) > 0, otherwise y = 0. The decision boundary is simply
the hyperplane that f(x) = 0. Hence d(x) = f(x)−0 = f(x)
and g(y,x) := max(0, ( 12 − y)f(x)).

Splitting the sum in (2) into two terms with respect to the
sensitive attribute z, we obtain∑

D
(z − z̄)g(y,x)

=
∑
z=0

(0− z̄)g(y,x) +
∑
z=1

(1− z̄)g(y, x) (3)

It can be readily observed that if the prediction matches
the true label ŷ = y, we have f(x) > 0 for y = 1 and
f(x) < 0 for y = 0. Hence, ( 12 − y)f(x) < 0. Due to
the maximum operation, g(y,x) = 0. Similarly, g(y,x) > 0
if ŷ ̸= y. Meanwhile, the term (z − z̄) takes different
signs for different sensitive groups: for the subgroup with
z = 0, (0 − z̄)g(y,x) ≤ 0; for the subgroup with z = 1,
(1 − z̄)g(y,x) ≥ 0. Hence, the addition of the two terms in
(3) characterizes the difference of the mismatch accumulation
between two subgroups.
If a decision boundary satisfies accuracy parity (AP) in the
sense that P (ŷ ̸= y|z = 0) = P (ŷ ̸= y|z = 1), the

covariance will be close to zero, Cov(z, d(x)) ≈ 0.Therefore,
the accuracy parity regularizer can be introduced as as

RAP =

(
1

|D|
∑

(z − z̄)g(y,x)

)2

(4)

=

(
1

|D|
∑

(z − z̄)max(0, (
1

2
− y)f(x))

)2

=

(
1

|D|
∑
z=0

max(0, (0− z̄)(y − 1

2
)f(x))

− 1

|D|
∑
z=1

max(0, (1− z̄)(
1

2
− y)f(x))

)2

The penalty comes from the difference of the mismatch
accumulation between the sensitive groups. If the model is
more fair, the performance of two sensitive groups will be
more similar and the penalty will be smaller. Hence, the
problem can be formulated as :

min
θ

L(θ;D) + αRAP (5)

where α > 0 is a hyperparameter used to tradeoff between
training accuracy and fairness in terms of accuracy parity.

B. Equal opportunity and predictive equality regularizers

In addition to accuracy parity criterion presented in the
previous subsection, in certain scenarios, we may be interested
in different fairness criteria. For example, in anomaly detec-
tion, where costly immediate actions may be taken towards
the high-load states, more emphasis needs to be put on the
classes that are predicted positive. In this case, fairness criteria
such as equal opportunity or predictive equality need to be
incorporated. Specifically, equal opportunity ∆EO := |P (ŷ =
1|y = 1, z = 0) − P (ŷ = 1|y = 1, z = 1)| characterizes the
difference of true positive rate TRP := P (ŷ = 1|y = 1),
while predictive equality ∆PE := |P (ŷ = 1|y = 0, z =
0) − P (ŷ = 1|y = 0, z = 1)| measures the discrepancy
between the false positive rate FPR := P (ŷ = 1|y = 0)
see e.g., [8]. Based on these two criteria, we can obtain the
corresponding regularizers as

RPE =

(∑
z=0,y=0 f(x)

Nz=0,y=0
−

∑
z=1,y=0 f(x)

Nz=1,y=0

)2

(6)

REO = (

∑
z=0,y=1 f(x)

Nz=0,y=1
−

∑
z=1,y=1 f(x)

Nz=1,y=1
)2 (7)

Similarly, f(x) is the output of the last linear layer. β1 and β2

are the weights of regularization terms which trade off between
fairness and accuracy. Adding the equal opportunity and
predictive equality regularizers, the problem can be formulated
as:

min
θ

L(θ;D)+β1RPE + β2REO (8)

III. FAIRNESS-AWARE USER TYPE IDENTIFICATION

There exist large numbers of users in power grids, which
fall into different classes, e.g., building types, safety or quality
status. Hence, user type identification plays an important
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role in many practical problems, including but not limited
to accurate pricing, abnormal behavior detection. Accurate
identification of the consumer types can also help estimate
their future consumption which can further help the power
companies balance the load of power grids and manage the
demand and supply. However, existing user type classification
frameworks mainly focus on imputing classification accuracy,
see e.g.,[14]. While the user consumption patterns can be
used for classifying the user types, it may also lead to
potential bias due to underlying correlation between users’
consumption patterns and their sensitive attributes such as
locations, building sizes.

Since user type identification typically faces with customers
from more than one category, the corresponding cross-entropy
loss can be written as

L(θ;D) = − 1

|D|

K∑
i

∑
x∈D

1y=ilog(Fi(x; θ)) (9)

where F (x; θ) ∈ RK and y ∈ {1, . . . ,K}, with K denoting
the number of classes. 1y=i is the identify function, which
returns value 1 if y = i, meaning the input data belongs
to class i. Fi(x; θ) denotes the ith entry of F (x; θ) which
provides the predicted probability of x being class i. In user
type identification task, x represents the load time-series data
and y represents user types. Sensitive attribute z denotes the
geographical location of the user. In this case the output of last
fully connected layer is a vector of size K, f(x) ∈ RK . Hence
the distance to the decision boundary for class i, 1 ≤ i ≤ K,
is the ith entry of f(x), denoted as fi(x).

A. Accuracy parity regularizer

Faced with multiple user classes, the accuracy parity reg-
ularizer also needs to be designed for multiple user classes.
Specifically, the accuracy parity regularizer can be written as
follow:

RAP =

(
1

|D|
∑

(z − z̄)g(y,x)

)2

(10)

=

[
1

|D|
∑

(z − z̄)max
(
0, (fŷ(x) − fy(x))

)]2
.

Since the final decision is based on the maximum value of
f(x) , fŷ(x), denotes the ŷth entry of f(x), is greater than
any other value in the vector, fŷ(x) ≥ fi(x),∀i ∈ {1, . . . ,K}.
The term contributes to the sum only when the predicted label
mismatches the true label. Due to the fact that fŷ(x)−fy(x) ≥
0, and the equality holds if ŷ = y, meaning the predicted
label correct. Therefore, max(0, (fŷ(x)− fy(x))) = fŷ(x)−
fy(x), and the max operation can be removed. The problem
can be formulated as (5) with loss function in (9) and the
regularization RAP in (10).

B. Equal opportunity and predictive equality regularziers

For equal opportunity and predictive equality regularizers,
we treat every class as a one versus K−1 binary classification
problem and aggregate the regularization term for K classes.

For each class, the two penalizers are similar to (6) and (7)
except that the distance to the decision boundary is fi(x)
instead of f(x). Then the EO and PE regularizer for multiple
classes can be written shown as:

RPE,i = (

∑
z=0,y ̸=i fi(x)

Nz=0,y ̸=i
−

∑
z=1,y ̸=i fi(x)

Nz=1,y ̸=i
)2

REO,i = (

∑
z=0,y=i fi(x)

Nz=0,y=i
−

∑
z=1,y=i fi(x)

Nz=1,y=i
)2

RPE =
β1

K

∑
i=0,...,K−1

RPE,i (11)

REO =
β2

K

∑
i=0,...,K−1

REO,i. (12)

Upon adding the EO and PE regularizers, the problem can
be formulated as (8) by employing the loss in (9) and the
regularization REO, RPE in (11), (12).

IV. EXPERIMENTS

In this section, experimental results for high-load indication
and user type identification are presented to evaluate the
proposed fairness-aware framework. Specifically, details of
data preprocessing and experimental settings will be clarified.

A. Dataset
The data was obtained from the database “Commercial

and Residential Hourly Load Profiles for TMY3 Locations
in the United States” [15]. It consists of hourly collected load
profile data for 16 different commercial building types and
residential buildings. The commercial buildings data is based
on the DOE commercial reference building models and the
residential buildings data is based on the Building America
House Simulation Protocols. Specifically, the data consists 7
types(classes) of commercial buildings in several cities in the
US. The input feature x is the load information of a building.

B. Fariness-aware measurements
In order to evaluate fairness performance, the equal oppor-

tunity(EO), predictive equality(PE) and accuracy parity(AP)
measures are used, with ∆EO := |P (ŷ = 1|y = 1, z =
1) − P (ŷ = 1|y = 1, z = 0)|, ∆PE := |P (ŷ = 1|y =
0, z = 1) − P (ŷ = 1|y = 0, z = 0)|. Similarly, AP
measures the difference between two subgroup’s accuracy:
∆AP = |P (ŷ = y|z = 0) − P (ŷ = y|z = 1)|. For the
user type identification task, although the number of classes
increases, the ∆AP stays the same. In order to measure the
EO fairness among multiple classes, taking every class as a bi-
nary classification case and weighted aggregate the difference
between two subgroups’ TPR as EO measurement: ∆EO =∑K

i wi∆EO,i where ∆EO,i = |TPRy=i,z=0 − TPRy=i,z=1|
and TPRi = P (ŷ = i, y = i)/P (y = i). Similarly, the PE
measurement for multiple classes is defined as ∆PE :=∑K

i wi∆PE,i where ∆PE,i = |FPRy=i,z=0 −FPRy=i,z=1|
and FPRi = P (ŷ = i, y ̸= i)/P (y ̸= i). The weight of each
class, wi := Ni

N , is based on the distribution of each class
across the dataset, Ni is the number of samples in class i and
N is the total number of samples.
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C. High load indication
The task here is predicting next hour load status of the

building based on its history loading pattern. We use the
long short-term memory(LSTM) network as the first layer
of the model. LSTM is an artificial recurrent neural network
(RNN) architecture which can provides an internal memory
for the networks. The output of the LSTM goes through 3
fully connect layers with ReLU activation function in hidden
layers and Sigmoid in the last layer to get the final result. x
is the load information of a building in the last 12 hours. y
indicates the high load status of water heat load in next time
hour: y = 1 if it is high load, y = 0 otherwise.

Table I and Table II list the results where building type and
building location are treated as sensitive attributes respectively.
Specifically, In Table I, z = 0 represents large building; z = 1
represents small building. In Table II, z denotes which state
the building is in: z = 1 indicates the building is in New
York, z = 0 for buildings in California. All algorithms were
run with training and test ratio of 4 : 1 where a random set
of periodic loading sequences is sampled from the original
dataset. Experimental results were averaged over 4 random
runs.

Table I and Table II list the results evaluated on testing set
in terms of accuracy(Acc), ∆PE , ∆EO and ∆AP . In each
row, the number in the first column refers to the equation
used for training. (1) represents the vanilla logistic classifier.
(5) and (8) are trained with the corresponding regularizers. It
can be observed from Table I and II that the proposed regular-
izers improve the fairness without degrading the classification
performance.

TABLE I
PERFORMANCE OF HIGH LOAD INDICATION WITH BUILDING TYPE AS THE

SENSITIVE ATTRIBUTE.

Acc(%) ∆PE(e−2) ∆EO(e−2) ∆AP (e−2)
(1) 87.04±0.5 5.6±1.2 8.3±3.3 1.25±0.7
(5) 87.6±1.2 4.7±1.5 9.8±5.1 0.45 ±0.4
(8) 87.8±0.5 5.1 ±2.1 7.7 ±4.0 1.3±0.6

TABLE II
PERFORMANCE OF HIGH LOAD INDICATION WITH BUILDING LOCATION AS

THE SENSITIVE ATTRIBUTE.

Acc(%) ∆PE(e−2) ∆EO(e−2) ∆AP (e−2)
(1) 87.04±0.5 6.03±1.2 8.6±3.2 3.5±1.4
(5) 87.12±1.5 5.79±1.9 8.4±2.5 2.2±1.3
(8) 86.76±1.1 5.3±1.5 5.5±3.7 2.3±1.0

D. User type identification
The user type identification task is using the loading pattern

of the buildings’ previous T hours to determine the type of the
building. Correct user type identification can assist the smart
power system for multiple tasks, such as the power manage-
ment, demand prediction[14]. The neural network contains 4
fully connected layers with ReLU activation function in hidden
layers and Softmax in the last output layer.

(a) Accuracy and ∆AP vs β2 (b) Accuracy and ∆EO vs β2

Fig. 1. Impact of equal opportunity and predictive equality regularizers. β2

represents the weight of REO, β1 = 0.8β2.

(a) Accuracy and ∆AP vs α (b) Accuracy and ∆EO vs α

Fig. 2. Impact of accuracy parity regularizer. α represents the weight of
RAP.

In Table III, z denotes which state the building is in: z = 1
means that the building is in New York, z = 0 means that the
building is in California. In this task, x is the load information
of a building in the last 8 hours and y ∈ {0, . . . , 6} represents
7 types of buildings.

TABLE III
PERFORMANCE OF BUILDING CLASSIFICATION WITH BUILDING LOCATION

AS THE SENSITIVE ATTRIBUTE.

Acc(%) ∆PE(e−3) ∆EO(e−2) ∆AP (e−2)
(9) 88.97±3.4 9.4 ±3.1 4.55±1.9 4.18±1.3
(5) 92.9±2.4 3.1±0.6 1.22±0.5 0.95±0.51
(8) 89.72±3.4 7.0±3.0 3.36±1.8 2.97±1.3

The vanilla logistic classifier in (9) results more unfairness
compared with the regularized model. In Table III, the regu-
larizers ensure the fairness during the training without perfor-
mance loss. The AP regularizer in (5) even hugely improve
the overall performance.

E. Impact of fairness regularizers on the performance

Though fine-tuning the weights of two regularizers could
let the model ensure the fairness while having little impacts
on final performance, increasing the weights which strengthens
the fair constraints will probably hurt the overall performance.
In this section, we will tune the weights of regularizers
and study the effect of fairness regularizers on the accuracy
performance.

The impact of EO regularizer shows as Fig. 1(a) and
Fig. 1(b). While the weight of EO regularizer increases,
the fairness measurements(∆AP and ∆EO) decrease and the
accuracy also decreases.
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The impact of AP regularizer shows as Fig. 2(a) and
Fig. 2(b). The fairness measures firstly decreases with increas-
ing weight while the accuracy performance is not hurt at all.
However, when the weight is larger than 50, the accuracy
decreases and two fairness measurements both increase.

The AP regularizer has less impact than EO regularizer
when the accuracy is high due to the following possible reason:
the penalty of AP regularizer of a subgroup only considers the
cases that are mis-classifed; based on the expression of (7),
the EO regularizer takes all cases into consideration no matter
the prediction is correct or not. When the model has very
high accuracy, the penalty from AP regularizer is small which
makes its weight less sensitive than EO regularizer.

V. CONCLUSION

Wide variety of data arises over smart power grids, which
enables the use of machine learning models for user clas-
sification tasks such as high-load indication and user type
identification. Due to the abundant access to personal data,
potential unfairness is a critical concern in such a complex
large system, with possible bias inherited in data collection
and data processing. In order to achieve more fair results
in decision making, management and resource allocation in
power systems, existing machine learning schemes need to
introduce additional bias-mitigating schemes before they can
be readily applied to the grids. To this end, the present paper
first examined and showcased the existing bias in directly ap-
plying Neural Network models, then two types of regularizers
were introduced to promote the fairness in user classification
tasks. The proposed regularizers could indeed improve the
fairness without significant performance loss. The proposed
regularizers could be readily used in other tasks not limited to
user classification, e.g.,abnormality detection, theft detection.
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