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Abstract—Electrical transmission lines are the most 

significant part of a power systems in terms of their spread and 

length with respect of other components. With their huge 

development due to the growing demand, network losses are an 

issue that needs the permanent attention of power network 

providers and distributors. The difficulties of predictive 

maintenance of power grids are related to the detection of early 

warning indicators of weaknesses of electrical cables. These 

indicators might be defined by partial discharges, corona 

effects, electrical arcs, all these phenomena being characterized 

by transient signals propagating in cables. Identifying such 

signals can be very helpful to assess their sources usually located 

in the weak parts of the grid. In this paper, we present a new 

approach for the detection and characterization of these types 

of transient phenomena in power grid using the phase diagram 

domain. The extracted features are classified using Support 

Vector Machine, Naïve Bayes and k-Nearest Neighbors. The 

experimental results indicate that the proposed method provides 

interesting results in the classification of real-life power grids 

signals, being a potential solution for predictive maintenance of 

electrical cables.   

Keywords—machine learning, power grid, phase diagram, 

signal classification, transient phenomena. 

I. INTRODUCTION  

Energy transmission and distribution networks are one of 
the areas intensively studied in recent years due to their 
importance. Identification and characterization of the dynamic 
phenomena of the power system have received a considerable 
attention.  

It has been widely accepted that the lack of accuracy of 
measurement of power system states is one important cause of 
failures in the power system. Based on this, the interest of 
monitoring transient phenomena is very high, because they are 
the precursors indicating the weaknesses in the electric cables 
and which, sooner or later, lead to power outages [1].  

The arbitrary transient behavior combined with the 
complex geometry of the power grid make the power system 
transient studies very complicated. The primary goal should 
be to maintain the integrity of the power system by deploying 
simple automatic analysis schemes. On the basis of 
monitoring systems, different control strategies can be applied 

through development and implementation of new analysis 
tools [2]. 

Considering these aspects, this paper proposes a way to 
characterize the transient phenomena of power grids, which 
will help to define the early warning indicators of cable 
weaknesses. The first step is to detect all the transient 
activities in the power grid under surveillance, after which we 
classify these activities.  

As a signal processing framework, we use the analysis in 
phase diagrams which is a data driven technique (model free) 
leading to the capacity to deal with a wide variety of transient 
signals. The representation of transient signals in phase 
diagram domain allows us to define meaningful descriptors 
and define the AI framework for the classification of these 
transient phenomena. 

The structure of the paper is as follows: Section 2 presents 
theoretical notions that underlie the analysis method derived 
from the phase diagram domain, as well as the presentation of 
the classification algorithm and the features used as inputs. 
Section 3 describes the results obtained by applying the 
method of analysis and classification algorithms previously 
proposed and Section 4 presents the conclusions of this paper 
and future perspectives. 

II. THEORETICAL ASPECTS  

A. Phase Diagram based Entropy 

Phase diagram-based entropy is a way in which we can 
highlight the changes that take place in the state of an analyzed 
system, being extremely suitable for non-linear data analysis 
[3]. To determine this measure, we start from a signal [ ]x n  

expressed in the form of a time series that is transposed into a 
new multidimensional representation space by the phase space 
vectors presented in (1). 
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In the description of these vectors, two essential 
parameters appear for the new representation form. The delay 
d between samples is given by the mutual information and the 
encapsulation dimension m is determined by the false nearest 
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neighbor method [4]. Also ke  are the axis unit vectors and

( 1)M N m d   , where N is the length of the time series. 

The quantification of the degree of similarity between two 
vectors from the phase diagram is evaluated by (2): 
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The main parameter to be considered is the tolerance 
threshold r used to establish the range in which the data 

fluctuations are considered similar. Also  is the operator of 

Euclidian distance and  is the Heaviside function. To 
determine the entropy [3], we quantify this degree of 
similarity on a logarithmic scale in order to capture the 
occurrences of similar vectors as in (3). 
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Thus, in defining the entropy, we take into account the 
variation of the degree of similarity once we increase the 
encapsulation dimension of the representation space. 

1m mPDEn                              (4) 

A low value of this parameter expresses the fact that the 
analyzed system is one defined by regularity, while a higher 
value of it highlights the less predictable character of the 
system. 

B. Phase Diagram Features 

In this subsection, we describe three features used to build 
our machine learning approach. To illustrate their definition, 
we consider a 2D representation of a time series as presented 
in Fig. 1.  

 

Fig. 1. The signal in time domain and its 2D phase diagram representation 

1) Angular mean 

Each representation in the phase space consists of several 

vectors. Each two successive position vectors of the 

representation form an angle. The angular mean involves the 

quantification of all existing angular values. Thus, after 

summing all the angles of the representation, we refer to their 

totality, using (5) to obtain the first feature AM [3]. 

 
Fig. 2. Angular mean representation 

   

   

1
1

1 1

1
arccos

1

M
i i

i i i

v v
AM

M v v


 

 

 
 

  
  

 

               (5) 

The graphical representation of the angular mean is shown 

in Fig.2. 

 

2) The length of the first gap 
As it can be seen in Fig. 3, the representation of the time 

series in the phase diagram consists of several spirals due to 

the positioning of the vectors in the phase space [3].  

 
Fig. 3. The length of the first gap representation 

The length of the first gap is the distance between the first 

two spirals. Let  1 1,A x y  and  2 2,B x y  be the two points 

furthest from the center of the representation on the two 
spirals, we can quantify the length of the first gap as in (6). 

   
2 2

2 1 2 1LFG x x y y                      (6) 

These two necessary points are determined as the 

intersection of the major axis of the ellipse in which the 

representation can be inscribed with the first two spirals of 

the phase diagram.  

 

3) Spatial entropy 
The points that form the representation of the time series 

in the phase diagram can be inscribed in the four quadrants, as 
can be seen in Fig.4. Depending on the type of time series, the 
points can be found mainly in different quadrants. For 
example, in the case of transient signals, it is observed that 
most of the points are grouped in quadrants Q1 and Q3 [3]. 

Q1Q2

Q3 Q4

 
Fig. 4. Spatial entropy representation 

To quantify spatial entropy, we use (7): 

1

3

log
Q

Q

N
SE

N
                                 (7) 

where 1QN and 3QN  represent the total number of the 

representation points found in quadrants Q1 and Q3. 

 In order to show the interest of the proposed features we 
compare them with some classical features based on the 
spectrogram, wavelet and statistical approaches. We use a 
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significant signal from each class identified in the 
experimental part (more information in Section 3). As it can 
be seen in Fig.5, the three transient signals have a specific 
shape. 

 
Fig. 5. The three classes of transient signals 

The first classical approach is based on the spectrogram. 
In Fig.6 the spectrograms of the signals can be observed. The 
information we can take from this approach is not enough. It 
is observed that the covered frequency area is approximately 
identical. Spectrograms similarity would also lead to problems 
in an image-based classification algorithm. 

 

Fig. 6. The spectrograms of the three transient signals 

The wavelet-based approach is also problematic. The 
scalograms shown in Fig.7 have a lower degree of similarity 
than the spectrograms. This may be more useful in image 
classification algorithms for signal classification. From the 
perspective of the information extracted, the impossibility of 
identifying a suitable scale is a real impediment. 

 

Fig. 7. The scalograms of the three transient signals 

One of the most used approaches in classifying signals in 
various fields is the statistical approach. The feature set used 
is based on some information extracted from the signal in time 
domain. The most used are based on the minimum, maximum, 
mean value, standard deviation and skewness [5]. Fig. 8 shows 
the values of these features for a set of 10 signals specific to 
the three classes. 

The degree of signal separation based on this approach has 
several shortcomings. As can be seen, the signals of Class 2 
and Class 3 can be confused based on the mean values. Class 
1 and Class 2 signals can also be confused based on standard 
deviation and skewness. 

 

 

Fig. 8. The boxplots of the classical statistical features 

Analyzing the feature-based approach in the phase 
diagram, we observe a complete degree of separation. Fig. 9 
shows the variation of the three features for the same set of 10 
signals. The three classes of signals are highlighted and 
separated, there is no possibility of confusion between them. 

 

Fig. 9. The boxplots of the phase diagram features 

Thus we can conclude that from the features perspective 
the approach proposed by us has a high advantage compared 
to the existing and used methods. 

C. Classification Techniques 

In this subsection we briefly present the three machine 
learning techniques used to classify the signals.  

The first one is Support Vector Machine (SVM). The goal 
of this algorithm is to find an optimal hyperplane between the 
possible outputs, that distinctly classifies the data [6].  In its 
most simple type, SVM supports binary classification. For 
multiclass classification, we must break down the 
multiclassification problem into multiple binary classification 
problems. This is called a one-to-one approach. In 
this approach, we need a hyperplane to separate between 
every two classes, neglecting the points of the third class. The 
computations of data points separation depend on a kernel 
function.  This function determines the smoothness and 
efficiency of class separation. In our paper, we use a second 
order polynomial kernel function. 

The second one is Naive Bayes (NB). The NB method is a 
classification technique based on Bayes’ Theorem with an 
assumption of independence among predictors. It assumes that 
the presence of a particular feature in a class is unrelated to the 
presence of any other feature [7].  

The last one is the k-Nearest Neighbors (KNN). KNN 
algorithm is a non-parametric supervised classification 
algorithm based on simple mathematics theory. KNN 
algorithm classifies by comparing the unknown test data 
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points with the training data points to which it may be similar 
[8].  Similarity is measured by a metric distance. In this study, 
the Euclidean distance presented the best results and the k 
nearest neighbors was set to five.  

The performance metrics used to evaluate the classifiers 
are recall, specificity, precision and accuracy. A perfect 
classifier is described by 100% recall and 100% specificity. 

III. EXPERIMENTAL CONFIGURATION AND RESULTS 

The first stage of our experimental work is the analysis of 
an electrical network in order to obtain the necessary electrical 
signals. Thus, a real three-phase power grid, consisting of two 
main stations, a source station and a distribution station was 
analyzed. The network analysis system consists of three high 
frequency current transformer sensors and one acquisition 
board. The configuration can be seen in Fig.10.  

 
Fig. 10. The experimental benchmark 

The signals from the source station are analyzed. As 
expected, the analysis of the cable from the source station 
highlights several transients carried in the network. Fig. 11 
shows the signal recorded at a sampling frequency equal to

50 sf MHz . Three different types of transients can be 

distinguished, specific to three generating sources. 

 

Fig. 11. The signal recorded from source station 

Thus, to Class 1 we assign the strongest signal in terms of 
amplitude and with the longest duration, to Class 2 we assign 
the periodic signal, with a pulse repetition rate of 6 T us  
and to Class 3 we assign the signal specific to the partial 
discharge. The first two classes of signals correspond to 
external loads connected to the network, which can cause a 
confusion with the rising fault signal – partial discharge. This 
is actually the third class of signals which is the sign of cable 
portion weakness. In Fig.5 we can see a specific signal from 
each class. 

 For the detection part of the transient signals using phase 
diagram-based entropy, the following aspects are considered. 
A 10-sample chosen window is slid over the entire duration of 
the signal to highlight entropy variations. For the tolerance 
threshold, the value of 0.75 is chosen from the standard 
deviation of the signal contained in the sliding window. The 
results in terms of detection can be seen in Fig.12. 

 
Fig. 12. Phase diagram-based detection 

As can be seen, this detection method highlights all the 
moments of occurrence of transient signals, regardless of their 
class. Even partial discharge signals, which are much smaller 
in amplitude than the other two types of signals, are detected 
using a threshold of 20% from the maximum value of the 
entropy. In order to evaluate the performance of the detection 
result, we compare the obtained result using one of the 
methods currently used for the detection of transient signals 
based on wavelet transform. Fig.13 shows us the result of the 
detection process which has a lower accuracy because the 
partial discharge is not detected. 

 
Fig. 13. Wavelet transform detection  

Without any knowledge on the shape and size of the 
analysis signal, there are some problems in choosing the 
wavelet, requiring a stage of visualizing the signals. The type 
of wavelet used in this paper was given by the Daubechies 
family, because it corresponded the best results obtained via 
many trials.  

The next step in our analysis is based on the classification 
part of the signals. We created a database using several 
measurements at different times. In this sense, we gathered 
1500 signals specific to the three classes. Of these signals, 
70% were used for training and 30% for the testing part of the 
classification algorithms. The confusion matrix for the train 
and test data sets using the algorithms are shown in Fig.14. 
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Fig. 14. The confusion matrix using SVM, NB and KNN 

Table I shows the results obtained using this approach in 
signal classification.  

TABLE I.  PERFORMANCE REPORT OF THE CLASSIFIERS  

SVM Class1 Class2 Class3 

Recall 100% 96.7% 97.9% 

Specificity 100% 98.3% 99% 

Precision 100% 98% 96.6% 

Accuracy 98.2% 

NB Class1 Class2 Class3 

Recall 99.3% 92.5% 100% 

Specificity 99.6% 96% 100% 

Precision 100% 99.3% 92% 

Accuracy 97.1% 

KNN Class1 Class2 Class3 

Recall 100% 84.4% 89.9% 

Specificity 100% 91.6% 95.3% 

Precision 100% 90.6% 83.3% 

Accuracy 91.3% 

 
As we can see, all classifiers based on features extracted 

from phase diagram domain have very good results. In 
particular, the best performance is obtained by using the SVM 
classifier. Despite the fact that it presents the best 
classification performance, SVM presented the longest 
training and testing times. The KNN algorithm presented the 
best training times. The maximum performance value 
obtained for the SVM classifier is 98.2%, and the recall, 
specificity and precision metrics for each class are over 
96.6%. In contrast, the minimum value of performance is 
obtained with KNN classifier giving an accuracy of 91.3% and 
values over 83.3% for the others metrics.  

 
Fig. 15. Performance comparison of the three approaches  

In order to check the accuracy of the features, we compare 
our approach with the set of statistical features described in 
Section 2. We also extract these statistical features from the 
detail coefficients obtain by wavelet decomposition of the 
signals. Fig. 15 shows a comparison in terms of the accuracy 

of the classification process for the three approaches. The 
results obtained with our proposed set of features are superior 
to those obtained with the statistical and wavelet approach. 
With the statistical features, the best results in the 
classification are also given by SVM with an accuracy of 
93.5% and the weakest also by KNN with an accuracy of 
86.2%, which are very close to the ones obtain with the 
wavelet approach. 

IV. CONCLUSIONS 

This paper presents a new approach based on phase 
diagram analysis of a power grid in order to characterize and 
classify each existing transient phenomenon. Depending on 
this, decisions regarding the state of the system can be made.  

The machine learning algorithms that classify power grid 
signals provide a valuable decision support. The best one is 
SVM, which offers a high classification accuracy and solve 
the separation problem without introducing a number of large 
features in the training process.  

Our future work is based on creating an automated global 
system through which each analysis on a power grid will allow 
the detection of each external signal and the localization and 
classification of their generating sources. Also, a future 
research direction will be based on extraction of the best 
combination of nonlinear features from the phase diagram. 
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