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Abstract—In this work, we present an energy-efficient federated
learning framework using coarsely quantized measured data for
Internet of Things (IoT) networks. In particular, we develop
a quantization-aware Federated Averaging Least Mean Square
(QA-FedAvg-LMS) algorithm that can learn parameters in an
energy-efficient fashion using measurements quantized with few
bits and develop a bias compensation strategy to further improve
the performance of the QA-FedAvg-LMS algorithm. We carry out
a statistical analysis of the proposed QA-FedAvg-LMS algorithm.
Numerical results assess the QA-FedAvg-LMS algorithm against
existing techniques for a parameter estimation task in a scenario
where IoT devices operate in federated learning mode.

Index Terms—Federated learning, energy-efficient signal pro-
cessing, mean-square error, coarse quantization

I. INTRODUCTION

The goal of federated learning [1], [2] is to learn a global
statistical model from data stored at tens to millions of
devices subject to storing the data locally at devices and only
communicating the intermediate updates generated by devices
to the server. In this context, Internet of Things (IoT) networks
include smart devices such as mobile phones, smart watches,
and autonomous vehicles which are generating new data every
day [3]. Federated learning offers IoT networks local data
storage at devices and transfers network computation to the
devices due to the growing computational capability of these
devices. This can mitigate concerns over transmitting private
information. Moreover, IoT devices contain many sensors that
allow them to interact with the physical world, collecting and
processing streaming data in real time [4], [5]. They integrate
various sensors such as temperature, humidity, accelerom-
eter, gyroscope, magnetometer, altimeter, heart rate, light,
microphone, camera, battery monitor, infrared proximity, gas,
ultraviolet, capacitive sensors. The type of sensor determines
the accuracy of the analog interface and the resolution of
the analog-to-digital converter (ADC). The ADC resolution
requirement varies greatly with the sensing application, ranging
from 6 to 16 bits (see [6] Table 1), and has a trade-off between
sensing performance and energy consumption since the energy
consumption of ADCs strongly depends on the number of bits
used to represent digital samples [7].

Prior work on energy efficiency has reported many contribu-
tions in signal processing for communications and electronic
systems that operate with coarsely quantized signals [8]–[10].

This work was supported in part by CNPq, CAPES, FAPERJ and by the
ELIOT Project (FAPESP 2018/12579-7, ANR-18-CE40-0030).

Even though there have been many studies on federated learning
that evaluated the need for communication-efficiency to reduce
the cost of communication between devices and the server
[2], [11], prior work on energy-efficient techniques that reduce
the cost of ADCs deployed at sensors is rather limited. In
adaptive IoT networks, a distributed quantization-aware least-
mean square (DQA-LMS) algorithm was proposed in [12],
[13] to reduce the power consumption of ADCs in sensors that
measure the input data in an energy-efficient framework.

In this work, we propose an energy-efficient federated
learning framework using coarsely quantized measured data for
IoT networks. In particular, we present a quantization-aware
Federated Averaging Least Mean Square (QA-FedAvg-LMS)
algorithm that can learn parameters in an energy-efficient
fashion using measurements quantized with few bits, and
devise a bias compensation strategy to further improve the
performance of the proposed QA-FedAvg-LMS algorithm. We
carry out a statistical analysis of the proposed QA-FedAvg-LMS
algorithm. Simulations assess the QA-FedAvg-LMS algorithm
against existing techniques for a parameter estimation task in
a scenario where IoT devices operate with federated learning.

Throughout this paper, we denote scalars, vectors and
matrices with lowercase, boldface lowercase and boldface
uppercase letters, respectively. a and â denote the estimated
and coarsely quantized versions of a, respectively. IM is the
M ×M identity matrix. (.)T and (.)∗ denotes transposition
and complex conjugate (Hermitian) transposition, respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Fig. 1. A federated IoT network

Fig. 1 shows the architecture of an IoT network consisting
of N IoT edge devices orchestrated by a server under federated
learning strategy. Each device k, k = 1, . . . , N , has access
to local training data Dk including nk = |Dk| data samples.

1691ISBN: 978-1-6654-6798-8 EUSIPCO 2022



Data sample i is represented by Dk,i = {xk,i, yk,i} where
xk,i ∈ CM and yk,i are the ith input data vector and associated
output response at device k, respectively. The goal of the
learning task of the network is typically determined by:

wopt ≜ min
w∈RM

j(w) =

N∑
k=1

akjk(w), (1)

where j(w) is the global objective function, jk(w) is the local
objective function, ak ≥ 0 denote weights and

∑
k ak = 1. It

is common to set ak = 1
N in homogeneous networks to give

an equal weight to every device k. The local objective function
is given by:

jk(w) =
1

nk

nk∑
i=1

ℓ(w;xk,i, yk,i), (2)

where ℓ(w;xk,i, yk,i) quantifies the loss of the model param-
eterization w on data sample {xk,i, yk,i}. One solution of
(1) can be obtained by applying iterative methods such as
stochastic gradient descent to (2) as follows:

wk,i = wi−1 − µ∇jk(wi−1), (3)

where µ is the step size, and the server receives the updated
parameter wk,i from devices and sends the following updated
global parameter to N devices:

wi =
1

N

N∑
k=1

wk,i. (4)

The server update (4) and local update (3) are key steps of
FedAvg [1]. The data at IoT devices are described by the
model:
yk,i = w∗

optxk,i+vk,i, k = 1, . . . , N, and i = 1, . . . , nk, (5)

where vk,i represents Gaussian noise with zero mean and
variance σ2

vk
at each device k that is uncorrelated with xk,i.

We consider the mean square error (MSE) as the local objective
function (2) to estimate wi as defined by:

jk(wi−1) = E
[∥∥ek,i∥∥2] ≜ E

[∥∥yk,i − dk,i
∥∥2]

= E
[∥∥yk,i −w∗

i−1xk,i

∥∥2], (6)

where dk,i = w∗
i−1xk,i is the desired estimation of yk,i in

(5) and ek,i = yk,i − w∗
i−1xk,i is the estimation error. The

gradient of (6) with respect to w∗
i−1 is ∇jk(wi−1) = −xk,ie

∗
k,i.

Replacing it into (3), we arrive at the distinctive adaptive
algorithm, Least Mean Square (LMS) at device k as follows:

wk,i = wi−1 + µxk,i(yk,i −w∗
i−1xk,i)

∗. (7)

Combining (7) with (4) results in the Federated Averaging-
LMS (FedAvg-LMS) algorithm that has been used in adaptive
federated learning tasks [14], [15].

As shown in Fig. 1, each IoT device uses sensors and hence
the measurement data are analog and should be converted
to digital data for processing. The average ADC resolution
for different types of sensors in IoT devices varies from 5
to 16 bits (see Table. 1 in [6]). Let {xk(t), yk(t)} denote the
analog measurement data that are converted to digital samples
{xk,i, yk,i} with high resolution ADCs. Note that we denote
the continuous time (analog) data with (t) whereas we use

subscript i for discrete-time data. One concern is that the
cost and power consumption of ADCs increase exponentially
with the number of quantization bits [7] for each device. This
motivates us to quantize the measurement data with few bits
to support the low-cost and low-power consumption features
of IoT sensors.

A. Signal Decomposition with Coarse Quantization
Let {x̂k,i, ŷk,i} denote the coarsely quantized version of

high precision data samples, i.e., x̂k,i = Qb(xk,i) and
ŷk,i = Qb(yk,i), where Qb is the b-bit quantization operation.
Since the quantization results in a biased estimation of model
parameter w, we propose a bias-compensation method for
Gaussian measurement data using the Bussgang decomposition
theorem [16]. We use the following assumption that is very
common in parameter estimation [17]–[19] and adaptive signal
processing [20].

Assumption 1: The input data regressors xk,i are zero-mean
with covariance matrices Rxk

= E[xk,ix
∗
k,i] and temporally

independent. This assumption also applies to the additive noise
sequences vk,i with variance σ2

vk
and the quantized regressors

x̂k,i with covariance matrices R̂xk
= E[x̂k,ix̂

∗
k,i]. Moreover,

covariance matrices are time-invariant and all data are assumed
spatially independent.

Let x̂k = Qb(xk) denote the b-bit quantized output of an
ADC at device k, described by a set of 2b + 1 thresholds
Tb = {τ0, τ1, ..., τ2b}, such that −∞ = τ0 < τ1 < ... <
τ2b = ∞, and the set of 2b labels Lb = {l0, l1, ..., l2b−1}
where lp ∈ (τp, τp+1], for p ∈ [0, 2b − 1]. Let us assume that
xk ∼ N (0, Rxk

), where Rxk
∈ RM×M is the covariance

matrix of xk. We now use Bussgang’s theorem [16] to derive a
model for the quantized vector x̂k, which we will use later to
derive our QA-FedAvg-LMS algorithm. Employing Bussgang’s
theorem, x̂k can be decomposed as

x̂k = Gxk
xk + qxk

, (8)

where the distortion qxk
is uncorrelated with xk, and Gxk

∈
RM×M is a diagonal matrix described by

Gxk
= diag(Rxk

)−
1
2

2b−1∑
j=0

lj√
π

[
exp(−τ2j diag(Rxk

)−1)

− exp(−τ2j+1diag(Rxk
)−1)

]
.

(9)

For the particular case that Rxk
= σ2

xk
IM , we have Gxk

=
gxk

IM , where

gxk
=

1√
σ2
xk

2b−1∑
j=0

lj√
π

(
e
−

τ2
j

σ2
xk − e

−
τ2
j+1

σ2
xk

)
. (10)

Note that this signal decomposition is also applied to the
quantized output response, ŷk.

B. Design of ADCs
We assume that the analog data samples arriving at the

ADCs have been adjusted (e.g., by using automatic gain control
(AGC)) to have approximately unit power and design the ADCs
for the unit variance data samples. We show in the numerical
results that even imperfect gain control at the analog inputs

1692



will not degrade the performance of the proposed algorithm.
To minimize the mean square error (MSE) between xk and x̂k,
we need to characterize the probability density function (PDF)
of xk to find the optimal quantization labels. Because choosing
these labels based on such PDF is ineffective in practice,
we assume the data input xk,i is Gaussian, and compute the
thresholds and labels as follows:

1) We generate an auxiliary Gaussian random variable xaux
with unit variance and then use the Lloyd-Max algorithm
[21], [22] to find a set of thresholds T̃b = {τ1, . . . , τ2b−1}
and labels Lb = {l0, . . . , l2b−1} that minimize the MSE
between the unquantized and the quantized data samples.

2) We wrap up the set of thresholds Tb by adding τ0 = −∞
and τ2b = ∞ to T̃b.

3) We quantize xaux using Tb and Lb, generate the quantized
signal x̂aux, and estimate the variance of the distortion,
σ2
qk

with the subtraction of the variance of the quantized
auxiliary signal from the variance of the auxiliary signal
as follows:

σ2
qk

= σ2
xaux

− σ2
x̂aux

. (11)

Note that step 1 designs the ADC thresholds and labels, step 2
completes the thresholds needed for (9), and steps 3 is useful
to estimate Rxk

later in (27).

III. PROPOSED QA-FEDAVG-LMS ALGORITHM

Let βk,i be a bias compensation coefficient to be chosen,
define the desired estimation dk,i = βk,iw

∗
i−1x̂k,i and construct

an MSE cost function as described by

jk(wk,i−1) = E[∥ŷk,i − dk,i∥2]
= E[∥ŷk,i − βk,iw

∗
i−1x̂k,i∥2],

(12)

which is defined based on the quantized data samples ŷk,i and
x̂k,i, and a bias correction term βk,i. The gradient of (12) with
respect to w∗

k,i−1 is given by:

∇jk(wi−1) = −βk,ix̂k,i(ŷk,i − βk,iw
∗
i−1x̂k,i)

∗. (13)

Replacing (13) into (3) and using (4), we obtain the QA-
FedAvg-LMS algorithm as follows:

wk,i = wi−1 + µβk,ix̂k,i(ŷk,i − βk,iw
∗
i−1x̂k,i)

∗ (14a)

wi =
1

N

N∑
k=1

wk,i. (14b)

We call (14a) and (14b) the adaptation and averaging steps
which are performed on the devices and the server, respectively.
The next section shows how the bias compensation βk,i should
be chosen such that (14) is asymptotically unbiased in the
mean.

A. Convergence Analysis

To analyze the performance of QA-FedAvg-LMS, we use
the weight-error vector defined as:

w̃k,i = wopt −wk,i, and w̃i = wopt −wi. (15)

Under Assumption 1, if the entries in the input regressors xk,i

are uncorrelated and with equal variance, we have Rxk
=

E[xk,ix
∗
k,i] ≈ σ2

xk
IM and the matrix Gxk

reduces to gxk
IM .

Let us denote Rqk = E[qxk,iq
∗
xk,i

] ≈ σ2
qk
IM where σ2

qk
is

given by (11).
Using (8), we can decompose x̂k,i and ŷk,i as follows:

x̂k,i = gxk
xk,i + qxk,i, (16)

ŷk,i = gdk
yk,i + qdk,i = gdk

w∗
optxk,i + pk,i, (17)

where pk,i = gdk
vk,i + qdk,i. Using this decomposition, we

write the error ek,i as follows:

ek,i = ŷk,i − βk,iw
∗
i−1x̂k,i

= gdk
w∗

optxk,i + pk,i − βk,iw
∗
i−1

(
gxk

xk,i + qxk,i

)
.

(18)

Replacing (18) into (14a) and subtracting from wopt yields

w̃k,i = w̃i−1 − µx̂k,ie
∗
k,i

= w̃i−1 − µ(gxk
xk,i + qxk,i)e

∗
k,i

= w̃i−1 − µ
(
gxk

gdk
xk,ix

∗
k,iwopt + gxk

xk,ipk,i

− g2xk
βk,ixk,ix

∗
k,iwi−1 − gxk

βk,ixk,iq
∗
xk,i

wi−1

+ gdk
qxk,ix

∗
k,iwopt + qxk,ipk,i

− gxk
βk,iqxk,ix

∗
k,iwi−1 − βk,iqxk,iq

∗
xk,i

wi−1

)
= w̃i−1 − µ

((
gxk

gdk
xk,ix

∗
k,i + gdk

qxk,ix
∗
k,i

)
wopt

−
(
g2xk

βk,ixk,ix
∗
k,i + gxk

βk,iqxk,ix
∗
k,i

+ gxk
βk,ixk,iq

∗
xk,i

+ βk,iqxk,iq
∗
xk,i

)
wi−1

+ gxk
xk,ipk,i + qxk,ipk,i

)
. (19)

We take the expectation from both sides of (19). Since xk,i,
qxk,i, and pk,i are uncorrelated pairwise, the expectations of
these cross terms vanish. Considering this, we obtain

E[w̃k,i] = E[w̃i−1]− µ
(
E
[
gxk

gdk
xk,ix

∗
k,i

]
wopt

− E
[(
g2xk

βk,ixk,ix
∗
k,i + βk,iqxk,iq

∗
xk,i

)
wi−1

])
= E[w̃i−1]− µ

(
gxk

gdk
Rxk

wopt

−
(
g2xk

βk,iRxk
+ βk,iRqk

)
E
[
wi−1

])
. (20)

In the last line of (20), we use a common assumption that
states that xk,i varies slowly in relation to w̃i−1 [20]. Thus,
when they appear inside the expectations we decouple their
expected values. This also applies to qxk,i in relation to w̃i−1.

We show next that a necessary but not sufficient condition
to have an asymptotically unbiased solution in the mean is that

gxk
gdk

Rxk
= g2xk

βk,iRxk
+ βk,iRqk , (21)

and we show in the next section that this condition is possible
by appropriately choosing βk,i. Assuming (21) and using (15),
we can write (20) as follows:

E[w̃k,i] =
(
IM − µgxk

gdk
Rxk

)
E[w̃i−1]. (22)

Subtracting wopt from both sides of (14b) we observe that
adding (22) results in the recursion

E[w̃i] =
(
IM − µ

N

N∑
k=1

gxk
gdk

Rxk

)
E[w̃i−1]. (23)
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Define Rx = 1
N

∑N
k=1 gxk

gdk
Rxk

. To ensure stability of the
recursion (23), we must have |eig

(
IM − µRx

)
| < 1. Using

the eigenvalue decomposition Rx = ΦxΛxΦ
∗
x, where Λx is

an M ×M diagonal matrix consisting of the eigenvalues of
Rx, and the matrix Φx is an M ×M square matrix whose
columns are the eigenvectors of Rx associated with these
eigenvalues, the condition on the step size can be written as∥∥IM − µΛx

∥∥
∞ < 1. Therefore, the stability condition for

QA-FedAvg-LMS is given by:

0 < µ <
2

λmax(Rx)
, (24)

where λmax is the largest eigenvalue of Rx.

B. Bias Compensation
From (21), we must have

βk,iIM = gxk
gdk

Rxk

(
g2xk

Rxk
+Rqk

)−1
. (25)

Therefore, the bias compensation term is expressed by

βk,i =
gxk

gdk
σ2
xk

g2xk
σ2
xk

+ σ2
qk

. (26)

Remark 1: (One ADC for each sensor). To reduce the cost
and energy consumption of sensors, we consider one ADC to
quantize the measurement data {xk,i, yk,i}. Then gxk

and gdk

can be considered equal and this reduces the complexity of
our algorithm as well.

Remark 2: (Approximation of data variance). Since the
devices receive quantized data and have access to the covariance
of the quantized data, Rx̂k

= E[x̂k,ix̂
∗
k,i] ≈ σ2

x̂k
IM , we

approximate the variance of high precision data as follows:

σ2
xk

= σ2
x̂k

+ σ2
qk
, (27)

where σ2
x̂k

= 1
M

∑M
l=1(x̂k(l) − mean{x̂k})2, and x̂k(l) are

the lth entry of vector x̂k. Therefore, at each data sample i,
the bias correction term is given by:

βk,i =
g2xk

σ2
xk

g2xk
σ2
xk

+ σ2
qk

. (28)

The QA-FedAvg-LMS algorithm is summarized in table I.

IV. SIMULATION RESULTS

In this section, we assess the performance of the QA-FedAvg-
LMS algorithm for a parameter estimation problem in an IoT
network with N = 100 devices. The unknown parameter vector
has a length of M = 32, is generated randomly and normalized
to unit norm. We generated 105 M×1 vectors with multivariate
Gaussian distribution as the input data samples xk,i for 100
devices (1000 data samples for each device) with the covariance
matrix Rxk

= σ2
xk
IM where σ2

xk
∈ (0.5, 1). The noise samples

of each device are drawn from a zero mean white Gaussian
process with variance σ2

vk
∈ (0.01, 0.05). The data samples

are quantized with T̃b and Lb to generate x̂k,i and ŷk,i. We
choose µ = 0.05 as the step size of QA-FedAvg-LMS and
FedAvg-LMS.

We use the mean-square deviation (MSD) to investigate the
performance of the network and use the excess mean square

TABLE I
PSEUDO CODE FOR THE QA-FEDAVG-LMS ALGORITHM

Initialization: w0 = 0

Design ADC with Tb and Lb and Compute σ2
qk from (11)

At each time instant i

At each device k

For a quantized data sample: {x̂k,i, ŷk,i} do
σ2
xk

= σ2
x̂k

+ σ2
qk

gxk = 1√
σ2
xk

2b−1∑
j=0

lj√
π

(
e
−

τ2
j

σ2
xk − e

−
τ2
j+1

σ2
xk

)
βk,i =

g2xk
σ2
xk

g2xk
σ2
xk

+σ2
qk

wk,i = wi−1 + µβk,ix̂k,i(ŷk,i − βk,iw
∗
i−1x̂k,i)

∗

At server: Receive wk,i from IoT devices

Send wi =
1
N

N∑
k=1

wk,i to IoT devices

error (EMSE) to compare the performance of each device k
as given by:

MSD ≜ lim
i→+∞

E[∥wopt −wi∥2],

EMSEk ≜ lim
i→+∞

E[∥(wopt −wk,i)
∗xk,i∥2].

(29)

The simulated learning curves are obtained by ensemble
averaging over 200 independent trials and the steady-state
values are averaged over the last 10% data samples. We have
compared QA-FedAvg-LMS (14) with FedAvg-LMS (7) with
generated data quantized with different numbers of bits. Full
resolution FedAvg-LMS refers to the case where the data
{xk,i, yk,i} is not quantized.

Fig. 2 shows the evaluation of the global MSD (29) for
1000 communication rounds between server and devices. Fig. 3
compares the steady-state MSD values for the different signal-
to-noise ratios (SNR) (keeping σ2

xk
∈ (0.5, 1) and changing

σ2
vk

) where the SNR value is averaged over devices. Fig. 4
compares the steady-state EMSE (29) performance of 10
randomly chosen devices. As it can be seen in the numerical
results, the network MSD and device-wise EMSE performance
of the proposed QA-FedAvg-LMS algorithm are closer to the
full resolution FedAvg-LMS while it substantially reduces the
power consumption related to the ADCs in the input sensors.

V. CONCLUSION

In this paper, we have proposed an energy-efficient frame-
work for federated learning and developed the QA-FedAvg-
LMS algorithm along with bias compensation strategies for
IoT networks. The QA-FedAvg-LMS algorithm has compara-
ble computational complexity to the standard FedAvg-LMS
algorithm while it substantially reduces the power consumption
of the ADCs in the network. Simulations have shown excellent
performance of QA-FedAvg-LMS as compared to FedAvg-
LMS for coarsely quantized signals.
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Fig. 2. MSD curves for the FedAvg-LMS (7) and QA-FedAvg-LMS (14)
algorithms.

Fig. 3. Steady-state MSD versus SNR for the FedAvg-LMS (7) and QA-
FedAvg-LMS (14) algorithms.

Fig. 4. Steady-state EMSE curves for the FedAvg-LMS (7) and QA-FedAvg-
LMS (14) algorithms.
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