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Abstract—The incorporation of UAVs in 5G and envisioned
6G wireless communication systems is considered for many
applications and use-cases, either as part of the infrastructure,
providing coverage and connectivity (e.g., during unforeseen
and rare events) or as an end-user, e.g., in remote sensing,
real-time monitoring and surveillance, to name a few. From
the perspective of the physical layer and the involved signal
processing algorithms, the transmission environment between the
UAVs and the ground communication devices, along with the
utilisation of massive MIMO in the mmWave spectrum, require
new channel estimation algorithms to support the required
physical layer functionality. In this paper, the problem of channel
estimation in a multi-user, UAV-based mmWave massive MIMO
system is considered in view of the so-called beam squint effect
as well as the time-varying nature of the involved channels due to
mobility. The proposed approach takes advantage of the low-rank
channel matrix and solves a minimisation problem via ADMM,
leading to a low complexity, iterative algorithm. The performance
of the proposed algorithm is evaluated via simulations and its
efficacy is demonstrated over other algorithms from the relevant
literature.

Index Terms—mmWaves, channel estimation, UAVs, ADMM,
time-varying channel, beam squint, massive MIMO

I. INTRODUCTION

In recent years, there have been increasing research efforts
towards integrating Unmanned Aerial Vehicles (UAVs) into
wireless communications systems [1], [2]. UAVs can be con-
sidered in various applications either as part of the system
itself (e.g., for serving as access points or relays aiming at
increased coverage and connectivity) or as end-users (e.g.,
for delivering goods, real-time monitoring, remote sensing
and precision agriculture). The envisioned applications build
upon unique features of UAVs like the ability to adapt their
position (including, notably, their altitude), improve large-scale
transmission conditions by avoiding obstacles, and rapidly
deploy during unforeseen or rare events.

The key features that make UAVs attractive in the context
of wireless communications, raise also a number of challenges
that need to be considered. In particular, the involved channels
between UAVs and ground end-devices can be quite different
when compared to conventional ground wireless channels [3].
As the UAVs are able to move in the 3D space, signals could
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encounter significantly different, time-varying transmission
conditions or produce considerable interference to ground
communication devices, including multiple base stations, due
to strong Line-of-Sight (LoS) signal components [4]. These
challenges are even more demanding when, also, mmWave
transmissions are considered for increasing throughput and
reducing latency in 5G and envisioned 6G use-cases [5]. To
address these challenges, the massive Multiple-Input Multiple-
Output (mMIMO) technology [6], [7] has a central role in
the design of effective UAV-based wireless communications
systems [8]. However, mMIMO, when used to transmit signals
in large bandwidths available in the mmWave spectrum, raises
yet another challenge related to the so-called beam squint
effect due to measurable propagation delays manifesting along
the large antenna arrays [9], [10]. This challenge leads to
a more elaborate channel model that requires many signal
processing operations at the transceiver to be revised [11].

In order to capitilize on the full gains of mMIMO in UAVs,
accurate channel state information is of paramount importance
for various operations at the physical layer like beamforming
[3]. Effective channel estimation and tracking techniques [11]
are expected to take into account not only the specific time-
varying transmission conditions with strong LoS components
due to high-altitude mobility, etc., but, also, consider the
effect of beam squint when the mmWave spectrum is uti-
lized. Focusing on the relevant literature, [12] proposed a
channel estimation approach with a random spatial sampling
structure, leading to improved performance for short train-
ing sequences and discussed a possible extension that takes
into account the beam squint effect. In [13], [14] and [15],
compressive sensing-based, off-grid sparse Bayesian learning-
based and block sparsity-based channel estimation algorithms,
respectively, were presented for mmWave mMIMO systems,
including the beam squint effect. In [16], the effect was tackled
by dividing the bandwidth into subbands and employing a
spatial spectrum-based channel estimation technique. Finally,
[17] proposed a channel estimation algorithm for a UAV-based
system, which considers not only the beam squint effect but
also, in contrast to the previous works, the time varying nature
of the involved channels.

In this paper, we study the problem of uplink channel esti-
mation in a multi-user UAV-based mmWave mMIMO wireless
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communication system similar to the one in [17]. By adopting
a parametric model for the channel that captures the effects
of beam squint and Doppler due to mobility, an efficient,
iterative channel estimation algorithm is proposed based on the
Alternating Direction Method of Multipliers (ADMM). The
proposed algorithm exploits the inherent low-rank property
of the multi-user channel gain matrix and does not require
knowledge of the exact number of the participating users (apart
from a “worst-case” upper bound), leading to a procedure of
low complexity. The performance of the algorithm is evaluated
via simulations and is compared favorably to other algorithms
from the relevant literature.

In the following, Sec. II describes the adopted channel
model and the multi-user, UAV-based wireless communication
system. The problem formulation and the proposed channel es-
timation algorithm are presented in Sec. III. The performance
evaluation of the proposed algorithm is provided in Sec. IV
and, finally, Sec. V concludes the paper.

Notation: A, a and a denote a matrix, a vector and a scalar,
respectively. The complex conjugate transpose and transpose
of A are denoted as AH and AT, respectively. IN represents
the N × N identity matrix. X ∈ CA×B , X ∈ RA×B , and
X ∈ IA×B denote the X matrix of size A×B with complex,
real, and imaginary entries, respectively. CN (a,A) denotes a
complex Gaussian vector having mean a and covariance A.
[A]kl is the matrix entry at the k-th row and l-th column.
Finally, ‖ · ‖∗ and ‖ · ‖F are the nuclear and Frobenius norms,
respectively, while ⊗ and � denote the Kronecker and the
Hadamard products, respectively.

II. SYSTEM AND CHANNEL DESCRIPTION

The wireless system that is adopted, comprises a single UAV
that employs a Uniform Linear Array (ULA) with N antenna
elements and K single antenna ground devices. Moreover, it
is assumed that Orthogonal Frequency Division Multiplexing
(OFDM) is employed with M subcarriers. Furthermore, it is
assumed that P subcarriers in each OFDM symbol are used
for transmitting pilot symbols for channel estimation purposes.
Let us denote the set P of the pilot subcarrier indexes as P =
{p1, p2, . . . , pP }. Finally, in the following, Ts is the symbol
duration (thus, the OFDM symbol duration is T = MTs),
W is the bandwidth of the transmitting channel with carrier
frequency fc and wavelength λ, c is the speed of light and
d = λ/2 is the spacing of adjacent antenna elements of the
UAV’s ULA.

Moving on with the adopted channel model, we follow
the approach presented in [17] for incorporating the effect
of beam squint and Doppler, while only the dominant LoS
component is retained. Hence, the continuous time-frequency
representation of the channel impulse response between the
k-th user and the UAV can be written as the N × 1 vector

hk(t, f) = ak(t)e−j2πfd,k(t)ta(θk(t), f), (1)

where ak(t), θk(t) and fd,k(t) are the complex channel gain,
the Angle of Arrival (AoA), and the Doppler shift, respec-
tively, while a(θk(t), f) is the N ×1 steering vector, which is

frequency dependent, thus, capturing the beam squint effect.
The n-th element of the vector, with n = 0, 1, . . . , N − 1, can
be written as

[a(θk(t), f)]n = e−j
2πnd sin θk(t)

λ (1+ f
fc

). (2)

Under a block fading assumption (as, also, adopted in [17]),
the parameters ak(t) = ak, θk(t) = θk and fd,k(t) = fd,k are
considered constant for L consecutive OFDM symbols and,
thus, the discrete time-frequency equivalent channel model can
be written as

hk(l, q) , hk(lT, q∆f) = ake
−j2πlfd,kTa(θk, q∆f), (3)

where ∆f = W/M is the sub-carrier spacing and (l, q)
indexes the q-th sub-channel of the l-th OFDM symbol.

Finally, before describing the input-output relation for the
received signal at the UAV corresponding to the pilot subcar-
riers indexed by P , the channels hk(l, q), for l = 0, . . . , L−1,
are put together in the following LN × 1 vector.

qk(q) = akvec
(
a(θk, q∆f)bT(fd,k)

)
= akpk(q; θk, fd,k),

(4)
where bT(fd,k) = [1, e−j2πfd,kT , . . . , e−j2π(L−1)fd,kT ] and
pk(q; θk, fd,k) is parameterized over θk and fd,k. Assum-
ing that each user k repeats the pilot symbols xk =
[xk,1, xk,2, . . . , xk,P ]T in all consecutive L OFDM symbols
(as in [17]), the corresponding received signal at the UAV is
written as

Y =

K∑
k=1

akHk(θk, fd,k)Xk + W, (5)

where Hk(θk, fd,k) is an LN × P matrix having as columns
the vectors {pk(q; θk, fd,k)}, q ∈ P , and the LN × P matrix
W captures additive noise with elements independent and
identically distributed as [W]lk ∼ CN (0, σ2

w). Finally, Xk is
a P×P diagonal matrix with the elements (i.e., pilot symbols)
of xk in its diagonal.

III. PROPOSED APPROACH

In this Section, we introduce the proposed approach for the
estimation of the channel which is formed between the K
single antenna ground devices and the UAV that employs a
ULA with N antenna elements. In this work, we consider
the parametric estimation of the channel, thus, we aim at the
estimation of the channel gains vector α ∈ CK×1, the vector
with the Doppler shifts fd ∈ RK×1, and the AoAs vector
θ ∈ RK×1. First, let us rewrite the summation term in (5) as

He = H̄A, (6)

where H̄ ,
[

H1(θ1, fd,1) . . . HK(θK , fd,K)
]

and A ,[
α1X

T
1 . . . αKXT

K

]T
. Then, A ∈ CKP×P is a low-rank

matrix given that the number of users is much lower than the
number of subcarriers K � P . On this premise, we propose a
low-rank channel estimation, where the problem is formulated
as

min
α,fd,θ

‖A‖∗ subject to ‖Y − H̄A‖2F ≤ κ, (7)
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where κ is the estimation accuracy parameter which depends
on the noise variance σ2

w.
In this work, we consider the special case where Xk =

IP , thus, matrix A becomes α⊗ IP . We choose to solve (7)
using ADMM, due to its convergence properties. To do so, we
introduce the auxiliary variable β ∈ CK×1 that will help to
decompose the cost function of (7) into a sum of two separate
terms, i.e.,

min
α,fd,θ,β

τ‖(α⊗ IP )‖∗ + ‖Y − H̄(β ⊗ IP )‖2F

subject to α = β, (8)

where the nuclear norm is defined as ‖X‖∗ ,
∑
σ(X).

Parameter τ > 0 provides a weighting between the two
terms of the cost function, i.e., the low-rank property and the
reconstruction accuracy.

The augmented Lagrangian function is expressed as

Lρ(α, fd,θ,β, z) =τ‖α⊗ IP ‖∗ + ‖Y − H̄(β ⊗ IP )‖2F
+ zH(α− β) +

ρ

2
‖α− β‖2, (9)

where ρ > 0 is the dual update step length. Following the
ADMM methodology, at the (`)-th ADMM algorithmic iter-
ation, with ` = 1, 2, . . ., the following separate sub-problems
have to be solved:

α(`+1) = argmin
α
Lρ(α, f (`)d ,θ(`),β(`), z(`)) (10)

f
(`+1)
d = argmin

fd
Lρ(α(`+1), fd,θ

(`),β(`), z(`)) (11)

θ(`+1) = argmin
θ
Lρ(α(`+1), f

(`+1)
d ,θ,β(`), z(`)) (12)

β(`+1) = argmin
β
Lρ(α(`+1), f

(`+1)
d ,θ(`+1),β, z(`)) (13)

z(`+1) = z(`) + ρ(α(`+1) − β(`+1)), (14)

with α(0) = f
(0)
d = θ(0) = β(0) = z(0) = 0.

1) Solving (10): Removing from Lρ the terms which are
not affected by α, we end up with the minimization of

min
α
τ‖α⊗ IP ‖∗+ (z(`))H(α−β(`)) +

ρ

2
‖α−β(`)‖2, (15)

which by completing the square becomes

min
α
τ‖α⊗ IP ‖∗ +

ρ

2
‖α+

√
2
√
ρ
z(`) − β(`)‖2, (16)

which is a strictly convex problem and can be solved with the
Singular Value Thresholding (SVT) algorithm [18].

2) Solving (11) and (12): To solve over fd, the gradient
descent technique is employed for each k for a fixed step size
γ and for a predefined number of iterations i = 1, 2, . . . , Imax.
Thus,

f
(`,i)
d,k = f

(`,i−1)
d,k − γ ∂Lρ

∂fd,k
. (17)

To obtain the partial derivatives of the scalar function Lρ(fd)
for each fd,k with k = 1, 2, . . . ,K, let us first write the general
rule for differentiation as

∂Lρ
∂fd,k

= tr

{(
∂Lρ
∂H̄

)H
∂H̄

∂fd,k

}
(18)

= −2tr
{

(β ⊗ IP )(Y − H̄(β ⊗ IP ))H
∂H̄

∂fd,k

}
, (19)

where
∂H̄

∂fd,k
= U� H̄, (20)

with U ∈ {0, 1}NL×KP being an all zero matrix except for P
columns which correspond to the Hk matrix. The n to n+L−1
elements of the p-th of these P non-zero columns, are given
by

[up]n:n+L−1 = −j2πn(1 + p1L×1), (21)

where n = 0, 1, . . . , N − 1, p = 0, 1, . . . , P − 1, and 1L×1 is
an L× 1 all units vector. Similarly, to solve over θ, a number
of gradient descent steps are performed, i.e.,

θ
(`,i)
k = θ

(`,i−1)
k − γ ∂Lρ

∂θk
, (22)

where the gradient is expressed as

∂Lρ
∂θk

= −2tr
{

(β ⊗ IP )(Y − H̄(β ⊗ IP ))H
∂H̄

∂θk

}
, (23)

where the partial derivatives over θk for k = 1, 2, . . . ,K, are
given by

∂H̄

∂θk
= Q� H̄, (24)

with Q ∈ {0, 1}NL×KP being an all zero matrix except for
P columns which correspond to the Hk matrix. The n to
n+N − 1 elements of the p-th of these P columns are given
by

[qp]n:n+N−1 = −j2πl1N×1. (25)

3) Solving (13): Keeping only the terms related to β, the
ADMM sub-problem (13) becomes

min
β
‖Y−H̄(β⊗IP )‖2F −(z(`))Hβ+

ρ

2
‖α(`+1)−β‖2. (26)

Using the general rule for differentiation, we have that

∂L
∂βk

= tr

{(
∂L
∂B

)H
∂B

∂βk

}
− z(`)k + ρ(α

(`+1)
k − βk) (27)

= −2tr
{

(Y − H̄B)HH̄
∂B

∂βk

}
− z(`)k + ρ(α

(`+1)
k − βk)

(28)

= −2tr
{

YH̄H ∂B

∂βk

}
+ 2tr

{
BHH̄HH̄

∂B

∂βk

}
− z(`)k + ρ(α

(`+1)
k − βk) (29)

where B , β ⊗ IP , and

∂B

∂βk
=

∂β

∂βk
⊗ IP + β ⊗ ∂IP

∂βk
= ek ⊗ IP ,
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Algorithm 1 Proposed Channel Estimation
Require: Y, γ
Ensure: α, fd, θ

1: for ` = 1, 2, . . . do
2: Use SVT algorithm to solve (16)
3: for k = 1, 2, . . . ,K do
4: for i = 1, 2, . . . , Imax do
5: Perform a gradient descent step (17)
6: Compute the gradient (19)
7: end for
8: end for
9: for k = 1, 2, . . . ,K do

10: for i = 1, 2, . . . , Imax do
11: Perform a gradient descent step (22)
12: Compute the gradient (23)
13: end for
14: end for
15: end for
16: Solve the problem (26)
17: Perform a dual variable update (14)

where ek is a K × 1 vector which has a unit element at the
k-th position and zeros elsewhere. Solving ∂L

∂βk
= 0 provides

an estimation of βk.
Complexity: The Algorithm 1 consists of 5 ADMM steps,

which have to be repeated for a number of iterations till
convergence. At each ADMM iteration, the complexity of each
step depends on the number of antennas N , the number of
subcarriers P , the number of the stacked blocks L, and the
number of the users K. Furthermore, the solutions of (11) and
(12) require additional iterations due to the gradient descent
technique. However, the overall complexity is governed by the
complexity of the ADMM subproblem in (13). Specifically, the
complexity of the multiplication of H̄HH̄ is upper bounded
by O(NL(KP )2). This is much lower than the complexity of
Algorithm 1 in [17].

IV. SIMULATION RESULTS

In this Section, we evaluate the proposed technique via
the Mean Square Error (MSE) of the channel parameters
estimation, defined as:

MSEα ,
1

Ireals

Ireals∑
i=1

‖α− α̂‖2

‖α‖2
. (30)

The notation â refers to the estimation of a and Ireals is the
number of Monte-Carlo realisations.

System setup: We compare the MSE of the technique pre-
sented in [17] and the proposed Algorithm 1, for Ireals = 100.
The LoS mmWave channel is simulated at fc = 28 GHz with
bandwidth W = 600 MHz, symbol duration Ts = 1

W and
M = 1024 subcarriers. The number of pilot subcarriers is set
to P = 4, and the number of OFDM blocks is set to L = 12.
The antenna size for the UAV is N = 32 and the K devices
are specified in each experiment. We assume that the UAV has
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Fig. 1. Mean-square-error for the estimation of the channel gains α versus
the SNR, for K = 4 and K = 6.

maximum relative speed v = 80km/h with the ground devices.
This results into the maximum Doppler spread

fd,max =
v

c
fc ≈ 2 KHz (31)

The parameters for the proposed algorithm are set as τ = 1,
γ = 10−1, and κ = ‖W‖2F . The parameters for the Algorithm
1 in [17] are set as K = KM = 4, λ0 = 10−3, λmin = 10−8,
and ε = 10−3.

Estimation performance: Let us first evaluate the results
with respect to the Signal-to-Noise Ratio (SNR), which is
defined as

SNR ,
N

σ2
w

. (32)

In Fig. 1, we provide the MSE performance of the proposed
technique versus Algorithm 1 in [17]. Two cases for the
number of devices are considered, namely, K = 4 and K = 6.
The performance of both techniques for low and mid SNR
values is limited and worsens as the number of the users
K increases. This is due to the bad condition of He in (6),
which is related to the orthogonality of the channels between
different users. However, due to the exploitation of the low-
rank property, the proposed technique exhibits much lower
error floor for the higher SNR regime, in both cases.

In Fig. 2, we show the MSE results for the estimation
of the channel gains α, over the number of users K. It is
observed that, as the number of users K increases, the MSE
also increases. This is expected given that the number of
unknowns becomes larger and, thus, the difficulty to solve
the problem. Also, similar MSE behaviour has been observed
for the estimation of θ and fd, over SNR and the number of
users.

V. CONCLUSION

In this paper, the problem of channel estimation in a
multi-user, UAV-based mmWave massive MIMO system is
considered in view of the so-called beam squint effect as well
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Fig. 2. Mean-square-error for the estimation of the channel gains α versus
the number of the users K.

as the time-varying nature of the involved channels due to
mobility. The proposed algorithm exploits the inherent low-
rank property of the multi-user channel gain matrix and does
not require knowledge of the exact number of the participating
users (apart from a “worst-case” upper bound), leading to
a procedure of low complexity. This work can be extended
towards some interesting directions, such as considering more
general channel models that incorporate both LoS and non
LoS components.
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