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Abstract—
We present a maximum-likelihood estimation algorithm for

radio channel measurements exhibiting a mixture of independent
Dense Multipath Components. The novelty of our approach is in
the algorithms initialization using a deep learning architecture.
Currently, available approaches can only deal with scenarios
where a single mode is present. However, in measurements, two
or more modes are often observed. This much more challenging
multi-modal setting bears two important questions: How many
modes are there, and how can we estimate those?

To this end, we propose a Neural Net-architecture that can
reliably estimate the number of modes present in the data
and also provide an initial assessment of their shape. These
predictions are used to initialize for gradient- and model-based
optimization algorithm to further refine the estimates.

We demonstrate numerically how the presented architecture
performs on measurement data and analytically study its influ-
ence on the estimation of specular paths in a setting where the
single-modal approach fails.

Index Terms—DMC, Channel Estimation, Parameter Estima-
tion, Autoencoders, Deep Learning

I. INTRODUCTION

Radio channels, especially their accurate description, have
been a vividly studied topic for the past decades. Often, one
seeks underlying parameters of the propagating waves in a
measured environment. Usually, the assumption is that these
waves travel as specular rays/paths, i.e., Specular Components
(SC), through the environment in the form of plane waves.
However, it has been acknowledged [1]–[4] that the the data
model applied for High Resolution Parameter Estimation (HRPE)
as a superposition of resolvable SC is not sufficient to completely
account for the bandlimited data collected by the receiver. One
possible physical interpretation of Dense Multipath Components
(DMC) is as a superposition of a large number of SC which
can not be resolved with bandwidth and Signal-to-Noise Ratio
(SNR) of the measurement system.

The authors in [5] demonstrate that the mentioned model
mismatch can be overcome by accounting for this remaining
energy as a colored Gaussian noise. The underlying process
has to be parametrized in a sophisticated manner such that it
does capture the behavior of the non-resolvable components
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sufficiently well, does not interfere with the estimation of
resolvable specular paths while also the complexity of the
stochastic model allows for an efficient HRPE process.

No matter if the process is modeled as both spatially and
temporally correlated process [2], or just temporally correlated [1],
[6], the previously proposed models usually account for single
mixture models, i.e., one DMC mode, either in space- and
delaytime or solely in delaytime. However, for several propagation
scenarios in different bands and bandwidths, see for instance [7]
and Figure 6, we observed that the DMC process must be
modeled as a superposition of several independent modes, which
are separated in delaytime and/or space. If this multitude of the
DMC is neglected during the estimation process, the wrongful
estimation of a single mode ultimately also deteriorates the
HRPE of the SC due to this inherent model mismatch and
subsequently biased estimation of SC.

In this paper, we focus on a multi-modal temporal distribution
of the DMC and assume a spatially uncorrelated process,
for which [1] presented a model-based maximum-likelihood
approach, which is split in an initialization stage and an iterative
refinement stage based on gradient descent. We give a summary
of the algorithm in Section II-A. While the employed model
itself can easily be extended to incorporate an arbitrary number
of distinct modes, the initialization step implicitly assumes the
presence of just one mode.

To allow for robust multi-modal estimation, we propose to
use a so-called Auto-Encoder using convolutional networks [8],
which jointly infers the number and shapes of the DMC
modes directly from measured transfer-functions. Moreover, the
proposed Neural Net (NN) can separate these, such that the
initialization from [1] can be applied separately. Along the way,
we also propose a numerically more suitable parametrization of
the DMC.

II. ALGORITHM

We briefly review the setting for the currently available
algorithms and explain their approach. A radio channel
observation consisting of Nf ∈ N frequency samples and
M uncorrelated snapshots can be modeled as

y = f(θ) + n(δ) + n ∈ CNf×M , (1)
where f : Θ ⊂ Rs → CNf×M describes the resolvable specular
components and n : ∆ ⊂ Rd → CNf×M is a complex zero-
mean Gaussian but colored noise process we use to model
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Fig. 1. Example for a single DMC mode and its parameters[1, p. 39]. Here, we
have that δ = [α1, βd, τd].

the DMC. Additionally, the columns ni of n are modeled as
independent zero-mean Gaussian random vectors with covariance
α0INf

representing the measurement noise.
If we already have a sufficiently good θ̂ to describe the

specular components, it is justified to consider only the residual
r(θ) = y − f(θ) = n(δ) + n. (2)

Parametrizing n(δ) ∼ N (0Nf×M ,Σ(δ) ⊗ IM ), where ⊗
denotes the outer product, we see that the covariance of the
zero-mean residual satisfies

E [r(θ)∗r(θ)] = (Σ(δ) + α0INf
)⊗ IM , (3)

where z∗ denotes Hermitian transposition and θ being the true
parameter that is the origin of the observation y.

A. State of the Art Algorithm

The core idea is to consider the negative log-likelihood of y
with respect to δ and α0, which essentially reads as
λ(r, δ, α0) = log det(Σ(δ) + α0I) + tr(r∗Σ(δ)−1r), (4)

where we omitted constant summands, factors and the dependence
on θ. If we now consider [1, eq. 2.61] we find the mapping for
Σ : R3 → CNf×Nf to be a Toeplitz matrix-valued function
defined as

Σ(δ)i,j =
δ1

δ2 + 2π(fi − fj)
· exp(−2π(fi − fj) · δ3), (5)

where fi denotes the sampling frequencies used to obtain
y, where we renamed δ = [α1, βd, τd]. See Figure 1 for an
interpretation of these.

a) Initialization: In order to find a good estimate, one
approach [1, Sec. 6.1.8] is to first define r̂ =

∑M
i=1 |F ∗ri|2

using the Fourier matrix F and then to calculate
α̂0 = min r̂; δ̂1 = max r̂ − α̂0

together with

δ̂2 =
δ̂1

Nf (‖r̂‖1 − α̂0)
,

where ‖ · ‖1 denotes the `1-norm. Finally, a simple yet usually
sufficient estimate for δ3 is given by

δ̂3 =
argmaxi(r̂i+1 − r̂i)− 1

Nf − 1
due to the shape of the assumed Power Delay Profile (PDP).

b) Refinement: Once a suitable η̂0 = [δ̂T , α̂0] is found,
we are free to perform any gradient-based algorithm. For
example, for our simulation and analysis we are going to use

ηk+1 = ηk + (H(ηk) + µkI4)−1 · J(ηk), (6)
where H(ηk) is the negative Fisher Information Matrix (FIM)
defined via λ and J(ηk) is the score function of λ. Simply
plugging (5) into (4) and using the definition for H and J
allows to efficiently carry out the update step in (6).

B. The Limitations

If we consider the approach outlined above in the setting
depicted in Figure 4, we see that the model mismatch in
terms of number of DMC modes is detrimental. The only
parameter correctly estimated is δ3, while the other account
for the existence of two modes instead of the assumed single
mode. Not only is the estimate of Σ inherently biased, also any
sensible estimation routine for the specular path parameters θ is
influenced by Σ. For instance, for specular paths arriving at
a normalized delay in [0.3, 0.5], the SNR is estimated to be
worse than it actually is, which will have an influence on how
reliable one considers the estimated parameter of this path.
In Section IV-A we provide a more detailed analysis of this
phenomenon.

C. Proposed Algorithm

The modifications and extensions to the above state-of-the-art
algorithm are three-fold.

a) Change of Variables: Originally in [1], α0 and α1

were defined on a linear scale, which forced any optimization
with respect to these parameters to obey the side constraints
α0, α1 > 0. However, these constraints can easily be alleviated
by means of a change of variables as

αprev
0 = exp(α0), αprev

1 = exp(δ1),

which not only renders the optimization over δ an unconstrained
problem, but also the first- and second-order derivatives are
much better behaved in terms of the condition number of the
Hessian matrix.

b) Extension of the Model: As a first step, we generalize
the parametric model for Σ to the multi-modal version Σm :
R3×m → CNf×Nf via

Σm(∆) =

m∑
i=1

Σ(∆i), (7)

which is a simple linear-combination of m covariances
corresponding to the single-mode setting. This means implicitly
that ∆ is the parameter of the multi-modal version of the
DMC process. Hence, the quantities H and J used in (6)
can straightforwardly be extended to this more general model.
Consequently, the challenging task is robustly estimating the
quantity m as the number of modes present in y and their
correct initialization.

c) Initialization via an Auto-Encoder: When looking at a
PDP like the one in Figure 4, it is intuitively clear how many
modes are present and where they are located. Hence, we
approach this learning problem like a supervised-learning, 1D
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Fig. 2. The architecture of the neural network is a 1D adaptation of U-Net.
Additional decoders are added to predict multiple DMC modes and a model-order
subnet (orange) to predict the input model order based on the latent space also
used for the reconstruction task.

imaging problem. To this end, we designed an Auto-Encoder
neural network targeted to solve two different tasks:

1) Predict the correct model-order for the given data sample
in the range m = 0, . . . , 3. Note the maximum value of
3 is arbitrary and the architecture can be extended to
predict more modes straightforwardly.

2) Recover, separate, and denoise up to m = 3 DMC modes
present in y, such that each component can be estimated
separately with the already existing methods.

With the denoised and separated modes obtained from the
decoders, the actual parameters δ of each mode are estimated
using a Levenberg-Marquardt-algorithm based estimator. In the
following section, we outline the network architecture and the
structure of the training data in order to accomplish these tasks.

III. LEARNING ARCHITECTURE

On a very high level, the architecture of the neural network
consists of an encoder, which downsamples the complex-
baseband input data into a latent space. Then, up to three
separate decoders are tasked with the reconstruction of the
independent DMC modes, based on the latent space.

a) Labels and Data: As we consider using real measure-
ment data to train our algorithm infeasible, because it is not
practical to manually generate a critical amount of labeled data,
we decided to use a synthetic dataset for the training by means
of the model Σ. This bears the advantage that we can generate
an almost arbitrarily large dataset to train the network to obtain
a well generalizing estimator.

Hence, our synthetic dataset consists of 108 randomly
generated instances of Σm(∆) + α0INf

and the corresponding
random realizations r = n(∆) + n ∈ CNf×M as input data,
ensuring the network never actually sees the exact same sample
twice, to strengthen generalization and robustness to noise.

As labels, we use the corresponding, separated DMC
components denoted by Σ(δm). The relationship between input
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Fig. 3. Data, labels and predictions of the proposed learning algorithm applied
to synthetic data. The predictions are processed individually afterwards to
estimate ∆. Periodicity is an artifact of the DFT-based preprocessing.

data, labels and the resulting predictions for the supervised
learning task is illustrated by Figure 3.

b) Preprocessing: Before being passed to our neural
network, the input data r are preprocessed. The preprocessing
involves applying an inverse DFT along the frequency dimension
and using the mean of the magnitude-square

d =

√
Nf

M

M∑
k=1

|F ∗rk|2 ∈ CNf , (8)

where F ∗ ∈ CNf×Nf denotes the inverse DFT matrix and rk
the k−th snapshot, where the contribution of SCs has already
been removed.

The second preprocessing step regards appropriate normal-
ization of the input data d to limit the dynamic range of the
input values fed into the non-linear neural network. This step is
necessary, as dynamic ranges in real-world measurement data
can vary over several orders of magnitude. To address this, we
normalize the values in d to get the normalized version dn by
means of applying

dn = logd− log max(d) (9)
element-wise.

This normalization scheme is calculated based on the inputs
only and enables reconstruction of correctly scaled predictions
after forward propagation using stored values of max(d) and
rescaling the forward propagation output accordingly.

c) Network Architecture: The general design of the applied
neural network architecture is lent from U-Net [9]. As our task
is based on 1-dimensional input data, the 2D convolutional
layers in U-Net are replaced by appropriate 1-D convolutions.
Before being passed to the encoder, dn is passed through two
convolutional layers (with batchnorm and ReLU activation
function), which increases the number of channels from 1
to 32. In the encoder four downsampling blocks are used,
each consisting of a convolutional layer followed by batch
normalization and ReLU activation function. The number of
filters is doubled by the convolution layers in each downsampling
block, which are parametrized with a kernel size of 3, stride of
2 (to achieve the downsampling), and circular padding of 1.
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Fig. 4. Setup for the simulations of the CRB with two dense components.
Initialization results for a single mode are shown in red. The simulated accuracy
results are given in Figure 5.

After the downsampling, the latent space has a dimension
of 16 features (with 512 channels). A convolutional layer is
used to upscale the latent to 24 features, enabling passing 8
features to each of the three decoders. The decoder consists of
three individual, structural identical, decoders (as we attempt
to reconstruct M ≤ 3 modes from each dn), each with 5
upsampling blocks. Each upsampling block consists of a
transposed convolution, followed by two convolutional layers.
Skip Connections between the decoder and encoders are added
to the all but the first upsampling block after each transposed
convolution layer. Every decoder receives a third of the latent
space to reconstruct its respective target mode.

The model order is prediction is performed by a small subnet
attached to the latent space. A convolutional layer is followed
by three fully-connected layers to predict a one-hot encoded
integer number between 0 to 3.

d) Loss and Training: To ensure proper convergence of
the neural network weights the used loss function is a weighted
sum of two different components.

1) the mode reconstruction loss uses mean squared error
(MSE)

2) the modelorder loss uses Binary Crossentropy (BCE)

For the computation of the mode reconstruction loss, the
predicted model-order m̃ is taken into account to mask mode
predictions of non-existent modes in the decoders. For example,
if the predicted model-order is 2, the mode prediction of
the third decoder is excluded from the computation of the
MSE loss. This results in the following loss function l :
RNf×3 × RNf×3 × N× N→ R+

0 defined as

l(x, x̃,m, m̃) =wx

m̃∑
k=0

‖xk − x̃k‖22 (10)

+wm [m̃ log(m) + (1− m̃) log(1−m)]

where x, x̃ denote the label and prediction for the modes from
the decoders, m and m̃ denote the label and prediction for the
model-order, and wx and wm denote scaling weights for the
two different prediction parts. The loss weights were fixed
to wx = 1, wm = 100, based on observations during training,
such that both parts have similar magnitude.
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Fig. 5. CRB of the delay of specular component shown in Figure 4 (blue) for
one and two DMC modes. If the estimator assumes only one mode present
(red), increasing the energy in the second mode (δ1), degrades the estimators
accuracy. Using two modes (black), the energy of the second mode can be
increased without noteworthy changes in accuracy.

IV. SIMULATIONS

A. Influence of the DMC on the Estimation Accuracy

To showcase the importance of the correct DMC model
order for the estimation process, we want to study the resulting
best-case accuracy any unbiased estimator can achieve by
means of the CRB. To this end, we create a simple synthetic
setup, where the simulated Impulse Response (IR) contains a
single specular component with fixed path weights and fixed
normalized delay τ = 0.45 is enclosed by two DMC modes
as depicted in Figure 4. The analysis of the CRB is not only
beneficial for theoretic purposes. The estimator proposed in [1]
also uses the inverse FIM to determine which specular paths are
reasonable estimates and possibly removes specific specular
paths if the expected estimation variance indicated by the CRB
is too high.

We simulate two different cases. First, the estimation of a
single mode, where one mode is spanning the area of the two
modes, to account for both at the same time. Second, we carry
out the proposed method, which should correctly detect the two
modes. We run this scenario for varying intensity of the second
mode by means of varying δ1 of this DMC, i.e. ∆2,1. Then,
we evaluate the deterministic CRB for a peak at the depicted
position, and we average these values over 200 realizations per
level of δ1 of the second mode.

As we can see in Figure 5, the resulting estimation accuracy
differs significantly for the two settings. For higher intensities
of δ1, the scenario increasingly resembles the one depicted
in Figure 4. Hence, the assumed colored noise distribution
renders the specular path harder to distinguish from random
fluctuations in the measurement. However, if we correctly
impose a model with two modes, the intensity of the modes
does not significantly influence the predicted accuracy for the
specular paths delay.

B. Joint Estimation of DMC and SC

To also apply the proposed DMC estimation routine to a
more realistic setup, we used measurement data collected in a
channel-sounding campaign, which clearly shows at least two
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Fig. 6. Estimation of three DMC modes in measurement data [7] from a
channel sounding campaign. The DMC are estimated from the residual using
the proposed neural network previously trained on synthetic data.

DMC modes in some of the snapshots [7]. However, the data
still contains specular components that need to be removed from
the observation, such that the assumption in (2) is valid enough
such that the PDP is not biased by the remaining specular
components. Note, in practice the estimation of both the SC
and the DMC is heavily intertwined, since the estimates of θ
and δ are influencing each other. This effect is also visible
in the presented data. The mode starting at normalized delay
τ ≈ 0.7 might not be estimated, if more specular components
had been accounted for during the estimation prioir to the DMC
estimation.

In Figure 6 we plot the acquired data y, the residual r(θ)
and 3 estimated DMC modes. We used an algorithm similar to
the one presented in [1] to get an estimate for θ and hence r(θ).
To estimate δ, we used the model-order selection provided by
the proposed NN and then the initialization and refinement
explained in Section II-A. The first thing we notice is that the
prediction and estimation work on measurement data, which is
not to be taken for granted since the architecture was trained on
synthetic data without any specular components. Second, the
results indicate that the proposed architecture is also able to
estimate overlapping modes quite robustly. However, depending
on the use-case of the estimation data, it could be debatable if
the third mode is necessary to be estimated.

V. CONCLUSION

Proper estimation of multiple DMC is required to obtain an
unbiased estimate of both the dense as well as the specular
components. We show that the introduced autoencoder-based
neural net design allows estimating the separated DMC modes
together with model-order. We show that although the network
is trained on an artificially generated, synthetic dataset, the
results suggest that it can also be applied to measurement data.
Our results show, the model-based neural network approach
is suitable to denoise and separate up to three DMC and
suitable for subsequent estimator initialization, surpassing other
state-of-the-art approaches.

To further extend the current approach, two different directions
seem the most useful for the problem at hand, i.e., direct
estimation of DMC parameters and extension to the angular

domain. First, including the angular domain in the estimates
provides a valuable framework extension for use cases in antenna
array applications. With additional angular information of the
DMC better separation between dense components can likely be
achieved as the individual DMC can also be separated with
regard to their respective directivity angle in the array. Second,
to further improve the network performance on measurement
data, it is also possible to tune the parameter distribution in the
training set to better match the characteristics of the specific
measurement dataset. This could be accomplished by utilizing a
Generative Adversarial Network (GAN) to generate training data
which is even more similar to the measurement data encountered
in the inference task.
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[2] M. Käske and R. Thomä, “Maximum-likelihood based
estimation of angular parameters of Dense-Multipath-
Components,” in 2015 9th European Conference on
Antennas and Propagation (EuCAP), 2015.

[3] J. Poutanen, J. Salmi, K. Haneda, et al., “Angular and
shadowing characteristics of dense multipath components in
indoor radio channels,” IEEE Transactions on Antennas and
Propagation, no. 1, 2011. DOI: 10.1109/TAP.2010.2090474.

[4] E. M. Vitucci, F. Mani, V. Degli-Esposti, et al., “Polarimetric
properties of diffuse scattering from building walls:
Experimental parameterization of a ray-tracing model,”
IEEE Transactions on Antennas and Propagation, no. 6,
2012. DOI: 10.1109/TAP.2012.2194683.

[5] M. Landmann, M. Käske, and R. S. Thomä, “Impact
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