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Abstract—This paper introduces a novel blind solution for
joint channel estimation and data detection of convolutive mul-
tichannel communications systems where Probabilistic Shaping
(PS) is used. The convolutive channel estimation is based on the
Expectation-Maximization (EM) algorithm, and data detection is
achieved by re-utilizing the probabilities obtained within the EM
framework, based on a maximum a posteriori (MAP) estimation.
This work shows that, even if the source kurtosis is close
to the Gaussian one, the blind estimation is still possible via
the proposed method contrary to other existing HOS (Higher
Order Statistics) based methods. Simulation results show that our
algorithm provides an interesting channel estimation accuracy
and a much better performance in terms of symbol error
rate (SER) as compared to Hyperbolic-Givens multi-modulus
algorithm (HG-MMA) which is based on multi-modulus criterion.

Index Terms—Probabilistic Shaping, QAM modulation, EM
algorithm, Maximum a Posteriori

I. INTRODUCTION

In the context of wireless and coherent optical commu-
nications, PS has become a promising technique to enable
some recent record-setting transmission experiments [1], [2].
Generally, PS is able to provide fine-grained rate adaptability
(flexibility) and energy efficiency (sensitivity) gains [3]. PS
technique also allows high- (low-) energy symbols to occur
with relatively lower (higher) probability, which reduces the
average transmission energy per bit and consequently improves
the wireless reach in mobile communication systems. In op-
tical fiber transmission, the implementation of PS can also
effectively reduce the average power of laser signal, which
allows the optical link to have a higher tolerance to fiber
nonlinear effects. What’s more, PS technique realized through
probabilistic amplitude shaping (PAS) architecture provides an
elegant solution to the combination of shaping and coding
[4], [5], which was a long-standing problem of PS. PAS
architecture decouples coding and shaping so that each can
be done in a parallel way, which allows the implementation
of off-the-shelf modern soft-decision forward-error correction
(SD-FEC) in the PS-based communication systems.

However, PS also brings significant challenges for hardware
and digital signal processing (DSP) algorithms in transceiver.
An unavoidable problem in DSP is that the conventional
channel estimation and equalization algorithms, which have

been designed for quadrature amplitude modulation (QAM)
with uniform symbol probability distribution and relying on
high order statistics (HOS) of data, have poor performance
when PS is implemented. This is because PS gives a Gaussian-
like probability distribution, which affects significantly the
identification methods based on the HOS. Detailed analysis
of convergence failure of constant-modulus algorithm (CMA)
and MMA due to the closeness to Gaussianity of sources has
been presented in [6].

For this reason, in most experiment demonstrations, data-
aided techniques are often utilized to solve such a problem
[7], [8]. In this paper, we show that this shortcoming, in
the blind context, is not inherent to the problem at hand
and affects only methods based on fourth order cumulants,
e.g. CMA- and MMA-like methods. For that, we propose to
exploit the full HOS information via a maximum likelihood
approach to overcome this limitation. Hence, a blind EM-based
algorithm for PS, which realizes blind channel estimation
and data detection in MIMO communications systems; when
considering convolutive (multi-tap) channels is proposed. This
is an iterative method, whose objective is to find the maxi-
mum likelihood estimates of channel’s parameters in statistical
models that are related to unobserved variables and associated
to a Markov process. Moreover, as is mentioned above, the
proposed method can work compatibly with modern SD-
FEC thanks to PAS architecture of PS technique. Simulation
results show that the proposed solution exhibits very promising
channel estimation accuracy and much better performance of
data detection as compared to standard blind methods such as
the recently proposed HG-MMA algorithm [9].

II. SYSTEM MODEL

This section introduces the channel model and notations
adopted in this paper. A MIMO communications system with
Nt independent and identically distributed (i.i.d.) source sig-
nals is considered, where we denote by ut(k) the transmitted
symbol sequence by t-th source. The transmitted signal is
generated according to Maxwell-Boltzmann (MB) distribution
[3] given by:

PX(x) =
exp
(
−λx2

)∑
t0∈J exp(−λt20)

, x ∈ J (1)
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where λ is a parameter that controls the entropy of the
source X , denoted by H(X) and expressed as H(X) =
−
∑
X∈J PX(x) log2 PX(x), with unit bits/symbol. J =

{±1,±3, ...,±(D − 1)} represents the alphabet set of PS-
D-PAM with its probabilistic vector being given by p =
[PX(1−D), ..., PX(−1), PX(1), ..., PX(D − 1)]

T. For PS-
D2-QAM, whose entropy is given by 2H(X) in this context,
its distribution is given by the probabilistic matrix Q = ppT

so that the probability of each complex symbol is given by
P (x+ jy) = PX(x)PX(y), where j =

√
−1 and x, y ∈ J .

Fig. 1: Channel between t0-th source and all the receivers

The architecture of the considered MIMO convolutive chan-
nel is illustrated in Fig. 1, in which, for simplification, only
the channels between t0-th source and all the receivers is
shown, while for the other sources, the channel structure will
be the same. At the receiver side, Nr receive antennas are
considered, so that the r-th received signal, denoted by yr(k)
with 1 6 r 6 Nr, is given by:

yr(k) =

Nt∑
t=1

M∑
n=0

hr,t(n)ut(k − n) + vr(k), (2)

where k = 1, 2, ..., Ns. Ns is the sample size and hr,t(n)
refers to the finite impulse response coefficients of the channel,
with a length of (M +1), associated with the t-th transmitter
and the r-th receiver. vr(k) denotes an additive white circular
Gaussian noise with variance σ2

v , which is independent among
the receivers.

In order to express the system model in a more compact
form, let’s define the following vectors and matrices:
hr = [hr,1(0), ..., hr,1(M), ..., hr,Nt

(0), ..., hr,Nt
(M)]

T,
u(k) = [u1(k), ..., u1(k −M), ..., uNt

(k), ..., uNt
(k −M)]

T,
y(k) = [y1(k), ..., yNr

(k)]
T, H = [h1, ...,hNr

]
T, v(k) =

[v1(k), ..., vNr
(k)]

T. Accordingly, (2) can be re-written as:

y(k) = Hu(k) + v(k). (3)

The system model presented by (3) can be considered as
a Markov process whose state vector is defined as s(k) =
[u1(k − 1), ..., u1(k −M), ..., uNt

(k − 1), ...uNt
(k −M)]

T

that consists of NtM successive symbols, belonging to a
set of D2NtM states, denoted by S = {b1, b2, ..., bN} , N =
D2NtM . The transmitted symbols are assumed to be i.i.d.
so that P (s(k) = bi) = Pi =

∏Nt

t=1

∏M
n=1 P (ut(k − n)).

The transition vector, associated with the transition between

two successive state vectors bi and bj , is expressed by tij =
t(k) = [u1(k), ..., u1(k −M), ..., uNt(k), ...uNt(k −M)]

T,
containing Nt(M + 1) symbols. Similarly, P (tij) can be
expressed as Pij = P (s(k) = bi, s(k + 1) = bj) =∏Nt

t=1

∏M
n=0 P (ut(k − n)). The set of all possible transition

vectors, denoted by T , contains D2Nt(M+1) elements.
Our very objective is to estimate jointly the channel and the

data in a blind (eventually semi-blind) context. In the known
channel case, it is established that when parameter λ in (1)
corresponds to the maximum kurtosis value, the system perfor-
mance (in term of symbol error rate) is significantly improved
[3]. Unfortunately, in such a case the PS signal’s kurtosis is
close to 3, the one of the Gaussian distribution, which makes
the blind channel estimation ineffective for methods relying
on 4-th order information, e.g. CMA- or MMA-like methods
[6]. According to some numerical analysis, the maxima of
kurtosis of PS-16-QAM and PS-64-QAM are 2.778 and 2.999,
respectively.

In this work, we highlight the fact that even if the kurtosis
is close to 3 (i.e., the 4th order cumulant is close to zero), the
HOS information of our probabilistically shaped constellation
is still available in cumulants of higher order. Table I illustrates
this claim by comparing the 6th order and 4th order cumulant
values of PS-16-QAM and PS-64-QAM when their kurtosis
are maximal (i.e. closest to 3).

TABLE I: Value of n-th order cumulant of PS-QAM at
maximum of kurtosis

Order of cumulant 2 4 6

Cumulant value (PS-16-QAM) 3.608 -1.446 11.35

Cumulant value (PS-64-QAM) 5.988 -0.02467 0.3955

To exploit such an HOS information, we propose next to
use a maximum likelihood approach which optimization is
performed via the EM algorithm.

III. EM-BASED ESTIMATION

This section details the proposed solution for blind estima-
tion of MIMO channels. A maximum likelihood (ML)-based
approach is proposed, which is minimized by using the EM
algorithm. This algorithm is an iterative procedure aiming
at finding maximum likelihood or maximum a posteriori
estimates of parameters in statistical models, depending on
unobserved latent variables.

In what follows, the parameters to be estimated are the
channel impulse response coefficients and the noise variance,
which are grouped in parameter vector ρ =

[
vecT(H), σ2

v

]T
,

where vec(·) denotes the vectorization of a matrix. Also, for
convenience, a series of successive observations (y(t1),y(t2),
...,y(tn)) and state vectors (s(t1), s(t2), ..., s(tn)) are denoted
by matrices Y[t1:tn] and S[t1:tn], respectively. Therefore, the
observations Y[t1:tn] represent the incomplete data, the states
S[t1:tn] stand for the missing data, while the complete data are
given by (Y[t1:tn],S[t1:tn]).

The EM algorithm is a well known technique that optimizes
the ML function via the iterative maximization of an auxiliary
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function (given below in eq.(4)). For that, one alternates
between two steps: E-step (for the evaluation of the auxiliary
function) and M-step (for its maximization). Next, we propose
to adapt it to our specific context to achieve the desired channel
estimation and symbol detection objective.

A. E-step

The aim of this step is to calculate the auxiliary function,
denoted by Q(ρ;ρ(l)), which is given by the conditional
expectation of the complete-data log-likelihood, with respect
to the conditional distribution of the missing data, given the
observations and the current estimated parameter value at the

l-th iteration, i.e. ρ(l) =
[
vecT(H(l)), (σ2

v)
(l)
]T

. Accordingly,
such an auxiliary function is expressed as follows:

Q(ρ;ρ(l)) = E
(
log fρ

[(
Y[1:Ns],S[1:Ns]

) ∣∣Y[1:Ns]

]
;ρ(l)

)
.

(4)
where E (·) refers to the expectation w.r.t. the distribution of
the missing data.

After some straightforward simplifications; and by ignoring
terms that are irrelevant to ρ, one obtains:

Q(ρ;ρ(l)) ∝∑
tij∈T

Ns∑
k=1

(
−Nrlog(σ2

v)−
‖y(k)−Htij‖2

σ2
v

)
ηρ(l)(k; i, j)

(5)
ηρ(l)(k; i, j)=P

(
s(k)=bi, s(k+1)=bj

∣∣∣Y[1:Ns];ρ
(l)
)

(6)

where ηρ(l)(k; i, j) stands for the posterior probability of the
two successive state vectors (s(k) = bi, s(k + 1) = bj), given
the observations Y[1:Ns] with the estimated channel parameter
ρ(l). ηρ(l) can be calculated iteratively by using forward-
backward variables denoted by αρ(l)(k; i) and βρ(l)(k; j) [10],
[11]. Neglecting factors independent from k, i and j, one can
write:

ηρ(l)(k; i, j)∝ αρ(l)(k; i)βρ(l)(k+1; j)φρ(l)(k; i, j)Pij , (7)

αρ(l)(k; i)=P
(
Y[1:k−1]

∣∣∣s(k)=bi;ρ(l)) , (7a)

βρ(l)(k+1; j)=P
(
Y[k+1:Ns]

∣∣∣s(k+1)=bj ;ρ
(l)
)
, (7b)

φρ(l)(k, i, j)=P
(
Y[k]

∣∣∣s(k)=bi, s(k+1)=bj ;ρ
(l)
)
. (7c)

By ignoring the terms that are independent from ρ, φρ(l)

can be computed by:

φρ(l) ∝
((
σ2
v

)(l))−Nr

exp

(
−‖y(k)−H(l)tij‖2

(σ2
v)

(l)

)
. (8)

The forward and backward variables can be computed
recursively by:

αρ(l)(k + 1; i) =
∑
c∈F(i)

αρ(l)(k; c)φρ(l)(k, c, i)Pc, (9)

βρ(l)(k; j) =
∑
c∈B(j)

βρ(l)(k + 1; c)φρ(l)(k, j, c)Pc, (10)

where Pc is the probability of the state vector c, F(i) (resp.
B(j)) denotes the set that contains all the state vectors in
forward (resp. backward) connected to bi (resp. bj), which is
referred to as predecessors (resp. successors) hereinafter. The
number of predecessors (successors) of a state vector is D2Nt .
Here the initialization for forward and backward iterations is
given by αρ(l)(1; i) = βρ(l)(Ns; j) =

1
D2MNt

, for all possible
i and j.

B. M-step

The aim of M-step is to find the vector ρ(l+1) that satisfies:

ρ(l+1) = argmax
ρ

Q
(
ρ;ρ(l)

)
. (11)

According to (5), Q
(
ρ;ρ(l)

)
has a quadratic form, thus

∂Q(ρ;ρ′)
∂ρ = 0 leads to an unique solution, which can be

expressed by:
H(l+1) = RytR

−1
tt , (12)(

σ2
v

)(l+1)
=

1

NsNr
tr
(
Ryy −H(l+1)Rty

)
, (13)

where auto-correlation matrices Ryy, Rtt and cross-
correlation matrix Ryt are given by:

Ryy =

Ns∑
k=1

y(k)yH(k), (14)

Rty = RH
yt =

Ns∑
k=1

∑
tij∈T

tijy
H(k)ηρ(l)(k; i, j)

=

Ns∑
k=1

E
(
t(k)

∣∣∣Y[1:Ns];ρ
(l)
)
yH(k),

(15)

Rtt =

Ns∑
k=1

∑
tij∈T

tijt
H
ijηρ(l)(k; i, j)

=

Ns∑
k=1

E
(
t(k)tH(k)

∣∣∣Y[1:Ns];ρ
(l)
)
.

(16)

To limit the number of iterations one can set a conditions:

‖ρ(l+1) − ρ(l)‖
‖ρ(l)‖

< ε, (17)

where ε is a small positive number chosen as threshold.

C. Data detection

Given the observation sequence and the estimated channel
parameters at the end of the iterative process, denoted by
Y[1:Ns] and ρ(end) respectively, an optimal criterion referred
to as minimum symbol-error probability [12] can be easily
integrated in the EM structure. The way to minimize symbol-
error probability is to find the symbol that maximizes the
posterior probability of transmitted symbol at each instant
given the full observations, which can be formulated as:

ût(k) = argmax
a∈A

P
(
ut(k) = a

∣∣∣Y[1:Ns];ρ
(end)

)
, (18)
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where A denotes the alphabet set of the considered PS-D2-
QAM, whereas ût(k) stands for the estimated symbol from
t-th source at instant k.

According to the posterior probability ηρ(end)(k; i, j) of two
successive state vectors (s(k) = bi, s(k + 1) = bj) given
the observations Y[1:Ns], the probability term in (18) can be
computed by:

P
(
ut(k)=am

∣∣∣Y[1:Ns];ρ
(end)

)
=
∑

i,j∈E(m)

ηρ(end)(k; i, j), (19)

where E(m) is the set of all transition vectors that satisfies
tij = [u1(k), ..., u1(k −M), ..., ut(k) = am, ..., ut(k −M),

..., uNt(k), ..., uNt(k −M)]
T. Consequently, the EM-based

algorithm, presented in this work, allows to achieve a joint
blind channel estimation and data detection.

IV. SIMULATION RESULTS

In this section, we analyse the performance of the proposed
blind EM-based algorithm in the case of a 2× 2 convolutive
MIMO system. The analysis consists of two parts.

The first part is aimed to demonstrate the channel estimation
performance. To do so, a benchmark is set by using a fully-
pilot-based channel estimation (i.e. all transmitted symbols
are assumed to be known), as showed in [13]. The per-
formance is evaluated through the Normalized Mean-Square
Error (NMSE), expressed as:

NMSE =
1

N0

N0∑
n=1

‖ĥn − hreal‖2/‖hreal‖2, (20)

where ĥn denotes the estimated channel coefficients at the n-
th run while hreal denotes the real (exact) channel coefficient
vector. N0 stands for the number of Monte-Carlo runs. The
second part focuses on demonstrating the performance of data
detection or source estimation. To highlight the performance
gain of the proposed EM-based algorithm, a comparison
with the HG-MMA [9] solution is conducted, in the case of
both uniformly distributed QAM and PS-QAM. For channel
coefficients, we take a channel model considered in optical
communications context [14], which is given by:[
y1(k)
y2(k)

]
=

M∑
n=0

µn

[
cos θn e−jφn sin θn

−ejφn sin θn cos θn

][
u1(k − n)
u2(k − n)

]
(21)

where M is referred to as channel degree, µn are constants
that control the intensity of inter-symbol interference (ISI),
while θn and φn represent the azimuth and elevation rotation
angles respectively, corresponding to the n-th channel’s tap.

Simulation parameters are listed in Table II, which are
applied to all simulations unless it is otherwise indicated.
To avoid ill convergence of the considered algorithms (i.e.
convergence to local extrema instead of the global one), we
initialize the iterative process by a least squares (LS) channel
estimate using Np pilots.

Fig. 2 depicts the channel estimation performance of the
proposed algorithm in terms of NMSE vs. SNR. The result

TABLE II: Common simulation parameters

Parameter Notation & Value

Constellation type PS-16-QAM
Entropy of source H = 3, 3.5 or 4
Number of data symbols Ns = 500
Number of pilot symbols for initialization Np = 20
Number of transmitters Nt = 2
Number of receivers Nr = 2
Order of channel M = 1
Number of Monte-Carlo runs N0 = 100
Threshold to limit number of iterations ε = 10−3

presented by hinit is obtained from a LS-based channel esti-
mation by using Np pilots only. The fully-pilot-based channel
estimation hfull-pilot is obtained in the same way as hinit,
but with a total number of pilots of (Ns + Np), which is
considered as an upper limit of hEM-B. It can be observed
that the proposed algorithm increases the estimation accuracy
by minimising the NMSE, compared with that obtained after
initialization (i.e. hinit). Moreover, the performance of the
proposed blind EM-based solution reaches the upper limit in
this case when SNR > 15 dB.

 

Fig. 2: NMSE vs. SNR for pilot initialization (hinit), blind
EM-based algorithm (hEM-B) and fully-pilot-based estimation
(hfull-pilot), in the case of PS-16-QAM with H = 3

Fig. 3 shows the performance comparison. One can observe
that, as expected, both algorithms converges well with similar
performance when uniformly distributed 16-QAM is imple-
ment, but HG-MMA fails to converge with PS-16-QAM for
entropy H=3.5 and H=3 (almost Gaussian case). Note that, for
H = 3, the source kurtosis is approximately 2.9, very close
to the Gaussian kurtosis 3. When entropy decreases, EM not
only succeeds to estimate properly the channel but shows a
better performance. The improvement is due to the change of
constellation because the source is closer to QPSK.

V. CONCLUSION

The proposed solution is able to make full use of the a priori
probability distribution of the considered PS constellation.
Also, data detection is realized by re-utilizing the probabilities
obtained within the EM framework, and based on the MAP.
Simulation results show that the proposed solution provides
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Fig. 3: Averaged SER vs. SNR for HG-MMA in the case of
PS-16-QAM with varying entropy

an interesting channel estimation accuracy and a much bet-
ter performance in terms of SER as compared to the HG-
MMA solution ((HOS-based method)). Note that, in order
to reduce the computational complexity, several simplified
(approximated) alternatives are under study, which will be
presented in future works.
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Patrick Schulte, and Wilfried Idler, “Rate adaptation and reach increase
by probabilistically shaped 64-QAM: An experimental demonstration,”
Journal of Lightwave Technology, vol. 34, no. 7, pp. 1599–1609, 2016.

[9] Syed Awais Wahab Shah, Karim Abed-Meraim, and Tareq Y Al-
Naffouri, “Blind source separation algorithms using hyperbolic and
givens rotations for high-order QAM constellations,” IEEE Transactions
on Signal Processing, vol. 66, no. 7, pp. 1802–1816, 2017.

[10] Ghassan Kawas Kaleh and Robert Vallet, “Joint parameter estimation
and symbol detection for linear or nonlinear unknown channels,” IEEE
Transactions on Communications, vol. 42, no. 7, pp. 2406–2413, 1994.

[11] Shun-Zheng Yu and Hisashi Kobayashi, “An efficient forward-backward
algorithm for an explicit-duration hidden markov model,” IEEE signal
processing letters, vol. 10, no. 1, pp. 11–14, 2003.

[12] Edward A Lee and David G Messerschmitt, Digital communication,
Springer Science & Business Media, 2012.

[13] Li Tao, Hui Tan, Chonghua Fang, and Nan Chi, “Volterra series based
blind equalization for nonlinear distortions in short reach optical CAP
system,” Optics Communications, vol. 381, pp. 240–243, 2016.

[14] Seb J Savory, “Digital coherent optical receivers: Algorithms and
subsystems,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 16, no. 5, pp. 1164–1179, 2010.

1725


