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ABSTRACT
This paper proposes a practical way to solve the Uplink-
Downlink Covariance Conversion (UDCC) problem in a Fre-
quency Division Duplex (FDD) communication system. The
UDCC problem consists in the estimation of the Downlink
(DL) spatial covariance matrix from the prior knowledge of
the Uplink (UL) spatial covariance matrix without the need
of a feedback transmission from the User Equipment (UE)
to the Base Station (BS). Estimating the DL sample spatial
covariance matrix is unfeasible in current massive Multiple-
Input Multiple-Output (MIMO) deployments in frequency
selective or fast fading channels due to the required large
training overhead. Our method is based on the application of
sparse filtering ideas to the estimation of a quantized version of
the so-called Angular Power Spectrum (APS), being the common
factor between the UL and DL spatial channel covariance
matrices.

Index Terms— Covariance Conversion, Sparse-aware pro-
cessing, Basis Pursuit denoising, FDD, Sparse filtering

I. INTRODUCTION
The current trend in communications applications is an increas-

ing demand for transmission rate, low latency, more connectivity
and reliability on the communication. To meet these requirements,
it is necessary to explore the millimeter Wave (mmWave) band
[1]. This band allows for more connectivity than lower frequency
bands and permits the transceivers to feasibly incorporate a much
larger number of antennas such that it can be called massive
MIMO [2]. As it is known in the massive MIMO literature,
having Channel State Information (CSI) is critical to achieving the
potential benefits of this technology. The general motivation of this
work is the estimation of the channel spatial second-order statistics
(statistical CSI) in the context of the mmWave band and massive
MIMO technologies in FDD systems where channel reciprocity
does not hold, although other applications are benefited by the ideas
presented in this work such as in Ultra-Wideband communications
[3].

In Time Division Duplex (TDD) systems, the UL and DL
channels are reciprocal, as long as the total transmission period
is shorter than the channel coherence time. This is the reason why
in typical TDD realizations the BS can use the CSI inferred from
the UE.

On the contrary, channel reciprocity does not hold in general
FDD schemes. In common FDD systems, the ratio between carriers
is λu

λd
≈ 1, being λu and λd the UL and DL carrier wavelengths

respectively. However, even if this value is approximately 1, the
increased number of antennas in the antenna arrays accentuates the
fact that both wavelengths are not exactly equal. Consequently, the
UL and DL channels are more likely to be uncorrelated in massive
MIMO than in previous MIMO configurations [4].
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Given that channel reciprocity does not hold and considering the
necessity of a large channel overhead to estimate the CSI in FDD
systems with massive MIMO configurations, several methods have
been explored to estimate the DL CSI using the prior knowledge of
the UL CSI. An example of these approaches are the well-studied
frequency correction techniques [5].

This work is focused on the family of algorithms that involve
second-order statistics transformations from the UL to the DL
channel, usually labeled as Covariance Conversion techniques, to
eliminate the non-reciprocity property of channels in FDD systems.
The general Covariance Conversion problem is depicted as:

UL-DL Covariance Conversion (UDCC) problem: Given the
prior knowledge of the UL spatial channel covariance matrix, Ru,
or an estimated version, R̂u, estimate the DL spatial channel
covariance matrix, R̂d.

The main assumption that motivates this family of techniques
is the reciprocity on the angular power distribution, also called
Angular Power Spectrum (APS), considered in the 3GPP spatial
correlation model [6]. Furthermore, there are some applications
where the power distribution along the angular domain is shown to
become sparse, such as in mmWave band communications [7] or in
Ultra-Wideband communications. The sparse assumption motivates
the use of Sparse-Aware ideas [8] in this work. Known methods
for Covariance Conversion in the literature are:

• Transforming Ru to Rd by employing a change of basis
in the Hilbert subspaces spanned by the UL and DL spatial
signatures [9]. This method exhibits the best performance in
the UDCC problem among all the state-of-the-art approaches,
but suffers from high computational complexity and is non-
reconfigurable.

• The interpolation of measured pairs (Rd,Ru) [10] is an
approach to solve the UDCC in a well-characterized scenario.
However, if the given scenario changes suddenly, the offered
solution in [10] becomes unreliable.

• Spline interpolation to different carrier wavelengths [11]
suffers from a lower performance than other state-of-the-art
approaches, but has low computational complexity.

Our work shows better performance and more configurability
than previously proposed methods in the literature, making it a
more preferable choice in a wider range of applications. Further-
more, the novelty of our work lies in the fact that our approach
to Covariance Conversion incorporates the prior information of
a sparse APS in the covariance transformation, while earlier ap-
proaches do not. In contrast to previous state-of-the-art sparsity
approaches, the ideas present in this work focus on the estimation
of statistical CSI (estimating covariance matrices) whereas previous
sparse methods focus on obtaining full CSI in FDD systems
(estimating channel vectors/matrices). We refer to [12] for more
insights on full sparse CSI estimation in FDD systems. There are
four ideas that motivate our work:

• In multiuser coherent communications, the knowledge of
statistical CSI is needed to obtain optimal beamforming
directions between the BS and UE, in the case of SIMO/MISO
communications [13].
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• In non-coherent communications, it is possible to conform a
more efficient beam by knowing the spatial channel second-
order statistics. This technique is called eigen-beamforming
[14].

• The spatial second-order statistics of the channel, as in the
model in [6], changes much slower than the channel coherence
time.

• In FDD, UDCC requires the same channel overhead as TDD
systems. Therefore, solving the UDCC problem reduces the
overall latency in an FDD scheme. It also transfers the
computational complexity to the BS which is a desired feature
in mobile cellular deployments.

This paper is structured in the following way: in Section II we
state the considerations and assumptions necessary to understand
the derivation of our approach. Then, we derive our ideas in Section
III. Finally, in Section IV, we show some results comparing our
method to the best performing algorithm in the state-of-the-art [9].

II. PROBLEM STATEMENT
The algorithm presented in this work is general to any kind

of communications scheme that takes benefit from the solution of
the UDCC problem. This means that the ideas presented in this
manuscript suit those applications where the correlation between
receiving antennas is useful and both the UL and DL channels are
not reciprocal. Taking the possible applications into consideration,
the derivation and the problem setting that we present in this work
are general for any kind of array configuration between the BS
and UE, i.e. SIMO/MISO or MIMO configurations, where the
duplexing between the UL and DL channels is done by an FDD
scheme. Let the UL channel be:

y(n) = Hu(n)x(n) +w(n), (1)

where x(n) ∈ CMu are the transmitted symbols, Hu(n) ∈
CMd×Mu is the channel matrix and w(n) ∈ CMd is the additive
white noise term. Md and Mu denote the BS and UE number of
antennas respectively. In this setting, the correlation between the
receiving antennas is defined as the expected value of the next
matrix product:

Ru = E[Hu(n)H
H
u (n)]. (2)

The DL counterpart of (2) is defined in a similar way with
the respective DL channel matrix. The main goal of the UDCC
protocol is to obtain an estimation of Ru ∈ CMd×Md , so it
can be transformed to its DL counterpart Rd ∈ CMd×Md . Note
that both matrices have the same dimensions because they contain
information about the correlation in the BS antennas, but are valid
on different carrier frequencies. From those two matrices, the DL
spatial covariance matrix is the one that is useful for the BS to
transmit to the UE through the DL channel.

The estimation of Ru is done by means of a training phase
where the BS obtains the second-order statistics information from
the UL channel. The training phase consists on the transmission
of K independent pilot symbols from the UE to the BS, which
are required to be zero mean and uncorrelated. The required pilot
symbols, x(n), must fulfill:

E[x(n)] = 0, (3)

and
E[x(n)xH(n)] = σ2

xI, (4)

where Muσ
2
x is the total received power at the BS.

Then, the UL spatial covariance matrix is obtained by the sample
covariance matrix with K > Md independent realizations as:

R̂u =
1

Kσ2
x

K∑
k=1

y(k)yH(k). (5)

In order to be able to convert the UL channel covariance
to the DL channel covariance, the channel must fulfill one of
two conditions, ensuring that the channel realizations for each k
are independent. On the one hand, the independence of channel
realizations is accomplished by having a sampling period between
channel uses, Ts, greater than the channel coherence time, Tc, or
by having such a sufficient interleaving depth that the previous
property is obtained virtually [15]. In this way, each channel
realization Hu(k) is independent for each k. On the other hand, in a
frequency selective channel the independence between realizations
in the sample estimation (5) is obtained due to the large delay
spread between symbols [15] or, equivalently, by having a baseband
bandwidth, Bs, greater than the channel coherence bandwidth, Bc,
obtained virtually by spread spectrum techniques.

The transformation of the UL channel spatial covariance matrix
to the DL spatial covariance matrix is achieved by exploiting the
common terms in the 3GPP spatial covariance model [6]. According
to [6], the UL and DL spatial covariance matrices are described by
the following model:

Ru =

∫ π

−π

ρ(θ)au(θ)a
H
u (θ)dθ,

Rd =

∫ π

−π

ρ(θ)ad(θ)a
H
d (θ)dθ,

(6)

where au(θ) and ad(θ) denote the array responses from the UL
and DL channels respectively, also known as the spatial signatures,
and ρ(θ) is the APS or Angular Spread Function (ASF) which
depicts the average power distribution along the angular domain,
θ ∈ [−π, π]. The carrier wavelengths, λu and λd, are taken into
consideration in the spatial signatures.

Unlike the array responses, the APS is assumed to be frequency
invariant. This property results in ρ(θ) being the common term in
(6), enabling the Covariance Conversion.

As the functions that describe the behaviour of (6) depend
entirely on the geometry of the environment, the transmission
period where the knowledge of these matrices is still valid is much
larger than the channel coherence time, Tc. In the applications that
motivated this work, the angular power distribution only contains
information of few differentiated scatter clusters, meaning that
one may found at most S differentiated peaks in ρ(θ) [7]. The
APS model in which we base the derivation of the Sparse-Aware
Covariance Conversion algorithm is the Geometry-based Stochastic
Channel Model (GSCM) [16] which describes mathematically the
APS as:

ρ(θ) =

S∑
s=1

αsfs(θ), (7)

where S < M is the total number of peaks and fs(·) is any
appropriate Radial Basis Function (RBF) that models the dispersion
and location of each scatter cluster s. To model the sparsity in the
angular domain inherent to the mmWave band, the scale parameter
in each fs(·) must model a narrow RBF. In (7), the different Angles
of Arrival/Departure, θs, must be sufficiently separated so every
cluster is well differentiated. This sparsity prior on the APS is
considered in the derivation of our approach in Section III.

Finally, even though the ideas presented in this paper are general
to any kind of spatial signatures, for simplicity, we consider a
Uniform Linear Array (ULA) in the BS. Given that the BS array is
an ULA, a steering structure is imposed on the spatial signatures,
au(θ) and ad(θ).

III. PROPOSED APPROACH
III-A. Quantization and preliminaries

Our approach is based on the quantization of the angular
domain θ, so (6) can be numerically approximated. The equispaced
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sequence of angles between θmin and θmax is defined as:

θi = θmin + (i− 1)
θmax − θmin

N − 1
, (8)

where θmin and θmax are chosen depending on the specific
application and the efficiency of the quantization is tightly related to
the choice of these two angles. For instance, in the case of ULAs, it
is known that this array configuration cannot differentiate between
an arbitrary angle, θ, and its reciprocal angle, θ+ π. Additionally,
in typical cellular networks sectorization configurartion [17] an
efficient choice for [θmin, θmax] would be [−π

3
, π
3
]. Having a

narrower expected span of angles, θmin and θmax, results in better
quantization resolution in the desired angular window for a given
complexity (N ).

The quantization of the angular domain in (8) is used to draw
samples from ρ(θ) as:

ρ = [ρ(θ1), ..., ρ(θN )]T = [ρ1, ..., ρN ]T . (9)

A numerical approximation is derived by plugging (9) into (6):

Ru(ρ) =

N∑
i=1

ρiuiu
H
i ∆θ,

Rd(ρ) =

N∑
i=1

ρidid
H
i ∆θ,

(10)

where ∆θ = θmax−θmin
N−1

and for clarity of the notation we define:

ui ≜ au(θi),

di ≜ ad(θi).
(11)

In this way, one must take into consideration the number
of samples, N , when implementing the ideas presented in this
manuscript. As a side note, whenever N tends to infinity, it is clear
that (10) tends to the original model, as long as the span of visible
angles, between θmin and θmax, is chosen correctly and efficiently.
Note that (10) defines the Covariance Conversion operation between
Ru and Rd for a given ρ.

Estimating ρ or ∆θρ from (11) is equivalent as ∆θ is a known
multiplicative constant. For simplicity, we omit ∆θ in the derivation
of the presented ideas.

III-B. Sparse-Aware approach on UDCC
Given the UL sample spatial covariance matrix, R̂u, as a prior

estimation, our approach consists on estimating ρ by finding the
optimal value for the following convex program:

ρ̂ = argmin
ρ≽0

||ρ||1 s.t.
||Ru(ρ)− R̂u||2F

||R̂u||2F
< ϵ, (12)

where the positivity constraint, ρ ≽ 0, is needed because in this
way one ensures the power distribution meaning of ρ. The rationale
behind (12) consists in the incoporation of a sparse prior on the
APS in the estimation of ρ, being a key difference with previous
Sparse-Aware CSI estimation which are generally based on a sparse
assumption of the channel matrices, Hu(n), [12].

In (12), we differentiate two components to remark: the cost
function and the main constraint. As for the cost function, we
want to promote sparsity on ρ. Indeed, ρ is known to be a sparse
vector due to two different reasons. Firstly, the actual APS, ρ(θ),
has finite and well-differentiated scatter clusters. Secondly, as the
dimension of ρ increases with N , the number of negligible levels of
power also increases due to quantization. However, the proportion
between zero and non-zero components is still maintained. The
main reason to choose the ℓ1-norm as a sparse inducing function
over other choices is that ℓ1-norm fulfills the regularity property
of a sparsity measure: ”Significant concentration of energy in one

single coefficient makes the rest negligible” [18]. The regularity
property is not fulfilled by all the sparsity functions (i.e. the ℓ0-
norm does not fulfil this property) and is desired in this context to
cope with noise components as N increases.

On the other hand, to achieve a practical solution, we define the
constraint to be a normalized Frobenius norm upper bound between
the estimated UL spatial covariance matrix, R̂u, and the matrix that
is generated from ρ, Ru(ρ).

Considering a normalized metric as a constaint in (12) is useful
because ϵ can be chosen independently of matrix dimensions. In
addition, the proposed constraint has the property that it is a convex
function on ρ. It can be easily proven by expanding the Frobenius
distance that the constraint in (12) adopts the following form:

dE(R̂u,Ru(ρ)) ≜
||Ru(ρ)− R̂u||2F

||R̂u||2F
= ρHKuρ−2ρHg+||R̂u||2F ,

(13)
where:

U = [u1, ...,uN ] ,

[Ku]i,j = |uH
i uj |2,

g = diag
(
UHR̂uU

)
,

(14)

where [·]i,j denotes the (i, j)-th component of the input matrix and
diag(·) represents the functional that extracts the main diagonal of
the input matrix. Note that Ku is the second-degree polynomial
kernel of the UL spatial signature. The latter property of Ku

ensures that the expression in (13) is convex on ρ since a kernel
matrix is known to be semi-definite positive. Consequently, (12) is
a convex optimization problem on ρ.

We can rewrite (12) in a Disciplined Convex Programing (DCP)
form (see the implementations from the authors in [19]) by plugging
(13) on (12) to foresee an efficient convex optimization algorithm
for this problem:

ρ̂ = argmin
ρ≽0

||ρ||1 s.t. ρHKuρ− 2ρHg + (1− ϵ)||R̂u||2F < 0.

(15)
It is remarked that, by means of the rationale that we have

presented, the initial problem in (12) has been transformed into
a quadratic program as in (15).

Having derived the DCP form in (15), another advantage of ℓ1-
norm is that several efficient and fast algorithms that solve ℓ1-
regularized convex programs are known in the literature, such as
the family of Iterative Soft-Thresholding Algorithms (ISTA) [20]
or the well-known Interior Point Method (IPM) (see [19] and [21]
for more details in how to solve (15) using IPM). Each algorithm
has its pros and cons. For example, the ISTA family is more robust
than IPM, but the latter converges much faster.

Given that ϵ regulates the closeness between R̂u and Ru(ρ),
there are two points that one must take into consideration to choose
a value of ϵ. Firstly, to estimate ρ it does not make sense to
require Ru(ρ) to be as close as possible to R̂u otherwise the
estimation of ρ would be incorporating noise components inherent
to the estimation of R̂u. Secondly, the sparsity of the solution is
controlled by ϵ. Small values of ϵ lead to a non-sparse solution
and yield a closer Ru(ρ) to R̂u, but require higher complexity
(higher values of N ), otherwise (15) becomes unfeasible. There
is a clear trade-off between ϵ and N in the sense that it is not
possible to reduce the value of both parameters while (15) still
being a feasible convex program. As a consequence, one must
choose between higher performance (a reasonably small ϵ) or lower
complexity (small N ).

Finally, given an estimation of ρ̂, generated by solving (15), the
conversion to the DL spatial covariance matrix is computed as:

R̂d(ρ̂) =

N∑
i=1

ρ̂idid
H
i . (16)
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IV. NUMERICAL RESULTS
In this section we show the performance of our approach to the

UDCC problem, as compared to three other estimators: DL sample
spatial covariance matrix, UL sample spatial covariance matrix and
the basic algorithm from the projection methods approach [9]. We
have chosen [9] because it is the best performing state-of-the-
art algorithm for UDCC. The performances of each estimator are
shown as the statistical mean of the normalized Frobenius distance,
dE(R̂d,Rd), obtained by Monte Carlo simulations.

Following the same methodology as in [9], we base our simu-
lations on the model in (7) [16]. The solution in (15) is labeled as
the Sparse-Aware method.

The model in (7) is simulated in such a way that the conditions
of the mmWave band are emulated, in particular, the sparse prior
on the APS. S is fixed to 5 scatter clusters and fs(·) are defined
as a Gaussian RBF:

fs(θ) = exp(−|θ − θs|2

σs
), (17)

where θs is uniformly drawn in each MonteCarlo realization from[
−π

3
, π
3

]
and each σs is uniformly drawn from

[
0.1π
180

, 0.2π
180

]
,

denoting the location and dispersion of the s-th scatter cluster.
Moreover, the weights αs from (7) are uniformly drawn from [0, 1],
the UL and DL carrier frequencies ratio is λd

λu
= 1.8

1.9
and the

antenna separation is set to be half the UL carrier wavelength,
d = λu

2
. The Signal to Noise Ratio (SNR) of the UL/DL channel

is defined in these simulations as:

γ =
tr(R)

Mdσ2
w

, (18)

where R is either the UL or the DL spatial channel covariance
matrix and σ2

w is the input noise power. Note that the SNR value
is invariant to the covariance matrix dimensions. In each iteration,
the UL and DL sample covariance matrices are estimated with an
SNR uniformly drawn from [10, 30] dB with K = 1000 noisy
measurements.

The Sparse-Aware and the Projection-based algorithms are fed
with the UL sample covariance matrix to perform the UDCC. As
for the Sparse-Aware specific parameters, ϵ is fixed to 0.0075 and
N = 2M2 in the simulation depicted in Figure 1. The reasoning
behind those values is that they are the combination of ϵ and N
such that ϵ is minimized and (15) is still feasible with reasonable
complexity. In this way, the Sparse-Aware algorithm can exhibit
state-of-the-art performance.

The rationale behind the presented simulations is that we wanted
to emulate a setting similar to the one depicted in [9] with
the addition of the sparse assumption on the APS. The sparse
assumption on the APS is the reason why we have chosen the scale
parameters in (17), σs, to be uniformly drawn from

[
0.1π
180

, 0.2π
180

]
.

It is remarked that in both simulations Md is referred as M for
notation simplicity.

As it can be observed in Figure 1, using UL sample spatial
channel covariance matrix as R̂d is not a reliable estimator for Rd

in massive MIMO (large Md) with FDD. Still, it is shown that
there exists some correlation between both channels, especially in
the small array regime (small Md).

In addition, it is remarked in the experiment shown in Figure
1 that the Sparse-Aware algorithm yields a similar performance to
the Projection method algorithm. What is more, the scale of the
problem is equivalent in both algorithms, being in the order of
2M2

d in this case.
The trade-off between N and ϵ is observed numerically in Figure

2, where the Sparse-Aware algorithm shows a better result than
the Projection methods and the DL sample covariance matrix in
the case of ϵ = 0.005. However, the increment on computational
complexity is larger than the performance improvement.

Fig. 1: Simulation results: ϵ = 0.0075 and N = 2M2
d .

Fig. 2: Simulation results: Trade-off between ϵ and N in the Sparse-
Aware algorithm. (Md = M )

It should also be noted that the Projection method has more
computational complexity overall than the Sparse-Aware since it
is required to compute 2M2

d integrals every time there is a spatial
signature reconfiguration or at the start of the communication [9].

V. CONCLUSIONS
All in all, we show that through quantization on the 3GPP spatial

covariance matrix model [6] and sparse filtering known results [8]
our approach is capable of achieving state-of-the-art performance
on the UDCC problem while being a more configurable algorithm
than other alternatives.

There still is room for improvement on the ideas presented
in this work. For example, it is possible to use the Angle of
Arrival/Departure prior knowledge to reduce the complexity of the
Sparse-Aware algorithm by allowing a smaller N for a given ϵ.
Due to space limitations, this idea is issued for future work.

To conclude, the Sparse-Aware algorithm presented delivers
high performance at a reasonable complexity in a massive MIMO
scheme, which is the main scope of this work.
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