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Abstract—Deep Learning (DL) has dominated a wide range
of applications due to its state-of-the-art performance. Novel
approaches introduce Artificial Neural Networks (ANNs) on fiber
communication channels to be used as intensity modulation/direct
detection (IM/DD) systems and optimized in an end-to-end fash-
ion. Despite the potential of these methods, the demanding nature
of DL models limits their applications in such domains, where fast
inference and low power consumption is required. Indeed, these
limitations fueled the research on neuromophic architectures,
including neuromorphic photonics, which holds the credentials
for unlocking matrix multiplications at high frequencies, while
minimizing energy consumption. However, at the same time,
photonic architectures impose new challenges to DL training
due to the underlying hardware constraints. In this paper, we
present a trainable data-driven noise-aware initialization method
oriented to easily saturated activation functions, such as those
typically used in optical neurons on the transmitter and receiver
side of a noisy IM/DD system intercepted by a noisy channel. The
proposed method is evaluated on a fully optical IM/DD system
using different fiber lengths, overcoming issues such vanishing
gradient phenomena that profoundly hinders the training of the
receiver and transmitter photonic neural networks (PNNs), while
also improving robustness to noise.

I. INTRODUCTION

DL has been extensively applied by both academic commu-
nity and industry leading to state-of-the-art performance [1].
Over the recent years, there is an increasing interest in
employing DL in the communication domain [2], ranging from
wireless [3] to optical fiber communications [4], exploiting the
intrinsic ability of ANNs to compensate noise, especially when
they are trained to withstand it [5], [6]. Such approaches design
the communication system by carrying out the optimization in
a single end-to-end process, including the transmitter, receiver
and communication channel, with the ultimate goal to achieve
an optimal end-to-end performance by acquiring a robust
representation of the input message [7].

Such novel approaches, which treat the optimization process
in an end-to-end fashion, gaining attention especially for fiber
optical communication, such as IM/DD systems, which are
currently the preferred choice in many datacenters, access,
metro and backhaul applications [8]. IM/DD systems have lim-
itations due to the nonlinear impairments originating from the
fiber dispersion followed by the square-law direct detection.
On top of that, various noise sources including the shot noise
of the photodiode (PD), the sin2(x) transfer function of Mach-
Zehnder Interferometric modulator (MZM) and the low-pass

Fig. 1. Schematic representation of the proposed noise-aware training method.
From top to bottom: the proposed initialization method is employed iteratively
to all layers for both transmitter and receiver. From left to right: first the
appropriate variance is estimated using the auxiliary task and then weights of
the layer are initialized. After initializing the weights of a layer, the auxiliary
parameters are discarded.

frequency response of almost every component, deteriorates
further the signal quality of such optical communication links.

Although it has been shown that DL can compensate these
phenomena that occur in communication channels [7], its
application is hindered by the high complexity of DL mod-
els, which increasingly demands more powerful and energy
consuming hardware [9]. Consequently, specialized hardware
accelerators have been developed, ranging from Tensor Pro-
cessing Units [10] to advanced neuromorphic hardware [11],
increasing both training and inference speed, while also re-
ducing power and energy consumption.

To this end, photonic hardware is gaining attention as a
very promising approach, due to their ability to provide ultra
fast matrix-based operations with very low power consump-
tion [12], [13]. In neuromorphic photonics, signals are encoded
using light, instead of electrical quantities, which are then
manipulated to provide the neuron’s functionality [14], [15].
Such approaches, ranging from purely optical components to
advanced combinations of electro-optical devices [16], [17],
have great advantages over their electronic counterparts due to
their massive parallelism potential, enabled by their enormous
bandwidth [18], [19], as well as the ability to operate in high
frequencies [20].
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Fig. 2. Photonic activations functions can be easily saturated compared to
typically ones used in most DL architectures

However, the unique nature of photonic hardware dictates
constraints on the neuromorphic photonic implementation that
hinders its application. More precisely, PNNs rely mostly on
sigmoid [17] and sinusoidal [21] based activation functions
that are susceptible to early saturation in contrast to the
traditionally used functions (such as ReLU [22]), as depicted
in Fig. 2. As a result, photonic activation functions work
on smaller regions of the input domain leading to narrow
activation windows making them easily saturated and suscepti-
ble to vanishing gradient phenomena [23]. Vanishing gradient
phenomena can lead to significant performance deterioration
since the model can be trapped in a bad local minimum or
even halt the training in early stages, making PNNs highly
sensitive to the initialization schemes.

Vanishing gradients phenomena have been extensively stud-
ied for the regular DL training and several enhancements
have been proposed to this end, such as variance-preserving
initialization schemes [24], [25]. However such schemes typ-
ically target traditionally used activation functions (such as
ReLU), limiting their usefulness in photonic architectures.
Even specifically tailored initialization methods that have been
proposed can still lead to suboptimal results compared to
regular DL models [21]. This behavior can be attributed to the
assumptions involved in the methods, e.g., data are assumed
to be normally distributed and/or linear approximations are
employed for the activation functions, some of which are not
always satisfied, limiting the performance of the models.

Our work introduces an end-to-end deep learning fiber com-
munication transceiver design inspired by [7], emphasizing
on training by examining all optical activation schemes and
respective limitations present in realistic demonstrations. More
specifically, we focus on training photonic architectures which
employ all optical activation schemes [17], [21], by simulating
their given transfer functions. Thus, the main contribution of
this paper is a data-driven noise-aware initialization method
that is capable of initializing PNNs by taking into account the
actual data distribution, noise sources as well as the unique na-
ture of photonic activation functions, as shown in Fig. 1. This
allows for reducing the effect of vanishing gradient phenom-
ena, as well as improving the ability of networks coupled with
communication systems to withstand noise, e.g., due to the
optical transmission link. To this end, we employ an auxiliary
task in order to approximate the optimal initialization scheme
that will allow the information to flow through the initial

state of the networks connected through the employed com-
munication channel, greatly improving the efficiency of back-
propagation. As experimentally demonstrated, the proposed
method significantly resists the degradation that occurred when
easily saturated photonic activations are employed as well
as significantly improves the signal reconstruction of the all
optical IM/DD system. To the best of our knowledge, this is
the first approach that is capable of appropriately initializing
photonic transmitter and receiver networks by taking into
account the limited activation range of photonic activation
functions, as well as the non-linear corruption that exists in
the optical channel due to noise source and fiber dispersion.

The rest of the paper is structured as follows. In Section II
we present the employed IM/DD setup, while in Section III we
present the proposed training method. Then, we demonstrate
the effectiveness of the proposed method on the employed
setup in Section IV. Finally, in Section V the conclusions are
drawn.

II. END-TO-END LEARNING IN IM/DD SYSTEMS

Same as in software-based DL, photonic neuromorphic
implementations rely on the perceptron with its ultimate goal
to approximate a function f∗ by mapping an input x ∈ RM ,
where M is the number of observations fed to an ANN, to
a category (typically y ∈ RN when one-hot encoding is
used) for classification problems, or to a continuous vector
y ∈ RN for regression problem, i.e., f∗(x) = y, where N
is the number of categories or values to regress respectively.
In turn, a multi-layer perceptron approximates f∗ by stacking
many different layers, f (n)(...(f (2)(f (1)(x;θ1);θ2);θn) = y,
and learn parameters θi, where 1 ≤ i ≤ n with θi typically
consisting of weights Wi ∈ RMi×Ni and biases bi ∈ RNi .
Mi and Ni refer to the number of input features and output
neurons of the i-th layer. Accordingly, the linear part of the i-
th layer of the model is defined as u(i)(yi−1) = W⊤

i yi−1+bi.
The output of the linear part is then fed to the employed
activation function g(·) to get the response of each layer as
yi = g(u(i)(yi−1)). Finally, the learning process aims to
minimize the loss function J(θ;y, t) with respect to weights
W and biases b using the backpropagation algorithm, where
t ∈ RN denotes the training targets. For multi-class problems,
we typically use the cross entropy loss defined as J(θ;y, t) =
−
∑N

c=1 tc log yc.
In this paper, we are using two photonic activation functions

that correspond to different photonic configurations that can be
used for providing the non-linear behavior required by ANNs.
The first one is the photonic sigmoid introduced in [17]:

g(z) = A2 +
A1 −A2

1 + e(z−z0)/d
, (1)

where the parameters were set to A1 = 0.060, A2 = 1.005,
z0 = 0.145 and d = 0.033 according to the experimental
observations from real hardware implementation, as reported
in [17]. For the second activation function the layout proposed
in [26] is used, which is based on a MZM [27] to appropriately
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TABLE I
PHYSICAL CHARACTERISTICS OF THE CHANNEL

Sampling rate 336Gsa/s
LPF bandwidth 32GHz - Gaussian Filter, σ = 0.7
Fiber dispersion 18 ps/nm/km
Fiber attenuation 0.18 dB/km
MZM A(t) = sin(t)
Fiber dispersion D(z, ω) = exp j(β2/2)ω2z

modulate an optical signal, along with a diode [21]. The
behavior of this activation is described by the transfer function:

g(z) =


0, if z < 0

sin2 π
2 z if 0 ≤ z ≤ 1

1, if z > 1

. (2)

The limited range in which those optical activation functions
work, as depicted in Fig. 2, imposes a careful design for the
employed initialization scheme. Furthermore, high slopes, es-
pecially in photonic sigmoid, are apt to culminate in saturated
area at early stages of training and result in a worse local
minimum.

In this work, we employed the aforementioned activation
functions in both the neural transmitter and receiver of the
IM/DD system which is trained in an end-to-end fashion as a
single feed-forward ANN, as proposed in [7]. The system ac-
cumulates the non-linear noise induced by the fiber dispersion
and builds robust representations of the transmitted messages
targeting to minimize the Bit Error Rate of the obtained signal
on the transmitter side. The operation of the IM/DD system is
also summarized, along with the proposed method, in Fig. 1.

On one end, the neural transmitter is composed of 3 fully
connected layers and gets an input of a 6-bit symbol that is
encoded into one-hot vector of size 64. In between is the
channel which transmits the signal employing a non-linear
transfer function with additional Gaussian noise. The major
limitation of the channel, which is also responsible for the
noise, is the intersymbol interference arising from optical fiber
dispersion [28]. In order to accurately simulate the channel,
the outputs of the transmitter are concatenated in a block
of 11 neighboring samples to be passed into the channel,
since the fiber dispersion introduces memory between several
consecutive symbols. In turn, the signal passes through a Low-
Pass Filter (LPF) to account for the finite bandwidth of the
system. Table II summarizes mathematical expressions for the
channel components and respective operational settings used
for the software-based implementation. Finally, the symbols
are deserialized to be fed into the receiver network. The
receiver gets the deserialized output of the channel as an input
of 48 features. Similarly to the transmitter, the receiver consists
of 2-hidden layers and an output layer with softmax activation
function. Note that we can train the system in an end-to-
end manner since the transfer function and the derivative of
channel’s components can be analytical computed, as showed
in [28]. This can in principle allow to run a simulated
backpropagation through the channel and train the transmitter
and receiver to account for the signal degradation introduced
by the communication channel.

III. PROPOSED METHOD

Considering the aforementioned architecture we propose an
initialization method that takes advantage of the effectiveness
of training shallow ANNs (up to two layers) to incrementally
estimate the most appropriate variance for initializing the
weights of more complex architectures. The proposed method
takes into account the noise and corruption that exist in the
whole system, as well as the slope of the activation units. This
is in contrast to the traditional initialization methods, such as
Xavier [25] and He [24], that consider only the size of every
layer (fan-in and fan-out) ignoring the synergistic effects of
different components on the models. In this way, the proposed
method is capable of modeling the effect of fiber dispersion on
the system to better estimate the most appropriate initialization
scheme to be applied.

The main hypothesis behind the proposed method is that
there is an appropriate Gaussian distribution N (µ, σ2) for each
layer (in both transmitter and receiver), which can maximize
the information flow through the network during the initial
steps of the training process by taking into account both
the distribution of the training samples and the noise that
arises through the noisy channel. Indeed, maximizing the
available information during the initial stages of gradient
descent ensures that information would not be blocked in
the early layers of models, since the information lost in one
layer cannot be recovered in the subsequent ones [29]. This is
crucial for the proposed optical IM/DD system considering the
synergistic effects of fiber dispersion, noise and high sloped
photonic activation functions.

However, learning the parameters µ and σ directly is not
possible, since the Gaussian distribution is not differentiable.
At the same time, using an information-theoretic measure
for estimating information flow, such as mutual information,
is especially challenging and inefficient in high-dimension
spaces [30]. To this end, we propose an auxiliary task based
on the expectation that the information for the task at hand
increases when the loss between the extracted representation
and the target variable is minimized. In this way, fitting an
auxiliary classification (or regression) layer can be used as a
proxy approximator. Therefore, instead of directly learning the
distribution parameters to maximize the mutual information
between each layer’s input and system’s output, we proposed
to optimize the parameters in order to maximize the informa-
tion that can be extracted using a linear classifier by maximiz-
ing classification accuracy. Apart from using an efficient proxy
for optimization, we employ a trainable parameter to rescale
a fixed distribution N (0, 1). This allows for effectively pro-
viding a differentialable expression for optimizing a Gaussian
distribution N (µ, σ̃2) using regular back-propagation.

The aforementioned procedure can be described as follows.
First, an additional scale factor ai is introduced for each layer,

ỹi = f(|ai|W⊤
i yi−1 + bi) ∈ RNi , (3)

where ỹi denotes the proxy output of the i-th layers which is
used to learn the parameters of the Gaussian distribution and
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| · | the absolute value operator. Assuming that the weights
are initialized by drawing from a Gaussian distribution with
zero mean and unit variance, altering the scaling factor results
in adjusting initialization variance for each layer. In turn, to
optimize scaling factor ai an auxiliary linear classification
layer is required, W class

i ∈ RNi×N , where N is the number
of classes. Therefore, the output of the auxiliary linear branch
is calculated as:

zi =
(
W class

i

)T
ỹi ∈ RN . (4)

In this way, ai and W class
i are those terms that need to be

optimized, while the actual weights of the network are kept
fixed. Then, the outputs zi from the auxiliary classification
layer can be directly used in loss function J(W class

i , ai; zi, t),
where J(·) is the cross-entropy loss. We also propose to
add an extra regularization term, denoted by Ω(ai), in order
to penalize the scaling factor when saturating the activation
function. Specifically, after forward passing the linear part of
the layer, ũi = |ai|Wiyi−1 + bi, we calculate Ω(ai) as:

Ω(ai) =
1

Ni

Ni∑
j=1

max{pmin − ũij , ũij − pmax, 0}, (5)

where pmin and pmax are the lower and upper bounds of the
activation region and max{·} denotes the maximum element in
the set. Therefore, the final loss function J ′(W class

i , ai;X,y)
is formulated as:

J ′(W class
i , ai;X,y) = J(W class

i , ai;X,y) + cΩ(ai), (6)

where c is the weight for the relative contribution of the
vanishing gradient penalty. Finally, scaling factor ai and
classification weights W class

i are optimized using gradient
descent:

∆ai = −η
∂J

∂ai
− ηc

∂Ω

∂ai
, ∆W class

i = −η
∂J

∂W class
i

, (7)

where η is the used learning rate.
After the optimization has been completed, the weights of i-

th layer can be re-initialized using the optimized scaling factor
ai. It is worth noting that the classification weights are no
longer needed after the initialization process is completed and
can be discarded. Starting from the transmitter to receiver, all
layers of both networks, from input to output, are iteratively
initialized with the aforementioned procedure. It should be
mentioned that during the initialization of the receiver, the
proposed method takes into account the corruption that oc-
curred in the fiber link and estimates the variance accordingly.
After this process has been completed, the model is ready
to be trained in an end-to-end fashion using regular back-
propagation. The proposed method is presented schematically
in Fig. 1.

IV. EXPERIMENTAL RESULTS

We train the neural optical IM/DD system described in
Section II in an end-to-end fashion using the RMSprop [31]
optimizer for 1.5 millions iterations using mini-batches of

253 randomly generated 6-bit symbols. These symbols are
encoded in one-hot vectors of size M = 64. For both the
transmitter and receiver we use MLPs with two hidden layers
(each one with 128 neurons). The size of the input layer of
the transmitter is 64, equal to the size of the receiver’s clas-
sification layer. Transmitter outputs 48 points of a time-series
concatenated with another 10 sets of points by the serializer
(as described in Section II) to construct the transmitted time-
series before it passes through the optical channel. In turn,
signal is deserialized and fed to the receiver PNN that consists
also of 48-neuron in the input layer. We applied the proposed
initialization method for 3 and 10 epochs for transmitter and
receiver respectively using RMSprop optimizer. The learning
rates of the transmitter and receiver are calculated according
to (ηr, ηt) = (ηfη, η), where η denotes the system’s learning
rate, which is set to 0.001. The ηf = {ηsig, ηsin} denotes
the different learning rates for each activation function, where
ηsig = 0.1 is referred to sigmoid-based and ηsin = 1 to
sinusoidal activations. Finally, for all different cases the weight
for the vanishing gradient penalty term c is set to 0.6. The
whole system is trained with a decaying learning rate starting
from 10−4 to 10−6.

We evaluated the proposed method in different fiber lengths
using different neural IM/DD system configurations. More
specifically, the models were trained and evaluated on ranges
between 30 and 70 kilometers (km) employing different ac-
tivation functions (sigmoid, photonic sigmoid and photonic
sinusoidal) comparing the proposed method with traditionally
used initialization schemes (Xavier and He). We report the
average evaluation loss over 80,000 randomly generated 6-bit
symbols in Table II. On the first column, the fiber length is
reported and the rest of the columns present, from left to right,
the following initialization schemes: a) Xavier initialization, b)
first initializing the network with Xavier and then employing
the proposed method, c) He initialization, and d) first initial-
izing the network with He and then employing the proposed
method.

As presented in Table II, the proposed method achieves
impressive performance improvements in the sigmoid case
with the evaluation loss reduced by about an order of mag-
nitude. This behavior is observed in both cases, regardless
of the employed initialization method, with the He method
performing greater than the Xavier when combined with the
proposed initialization method for fiber lengths longer than
30 km. The role of the initialization is also depicted in the
overall performance and convergence of the network, since
the proposed method constantly achieves lower evaluation loss
compared to the baseline initialization approaches.

For the photonic sigmoid architecture, the contribution of
the proposed approach is even greater when the model is
first initialized using the He method. However, combining the
proposed method with the Xavier method leads to the overall
best results. It is worth noting that for longer distances, such
as for 60 and 70 km, in which the corruption in which the
signal is significantly higher, the proposed method reduces
the evaluation loss by over 40%. For the photonic sinusoidal
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TABLE II
EVALUATION LOSS FOR DIFFERENT FIBER LENGTHS

L Xavier + Proposed He + Proposed
Sigmoid

30 7.38× 10−3 5.65× 10−5 9.90× 10−4 8.20× 10−5

40 5.15× 10−3 3.41× 10−3 3.26× 10−3 3.68× 10−4

50 1.11× 10−2 4.79× 10−3 5.30× 10−3 1.39× 10−3

60 7.38× 10−3 3.06× 10−3 7.66× 10−3 2.77× 10−3

70 6.94× 10−3 5.85× 10−3 6.76× 10−3 5.42× 10−3

Photonic Sigmoid
30 2.31× 10−4 3.14× 10−5 1.23× 10−3 6.86× 10−5

40 1.63× 10−3 2.21× 10−4 3.04× 10−3 2.74× 10−4

50 2.93× 10−3 1.31× 10−3 5.06× 10−3 1.70× 10−3

60 6.49× 10−3 1.97× 10−3 8.01× 10−3 4.08× 10−3

70 6.38× 10−3 2.34× 10−3 8.27× 10−3 5.03× 10−3

Photonic Sinusoidal
30 1.53× 10−5 1.17× 10−5 2.91× 10−5 1.02× 10−5

40 6.30× 10−5 6.28× 10−5 1.20× 10−4 1.18× 10−4

50 3.70× 10−4 3.15× 10−4 9.65× 10−4 4.32× 10−4

60 1.27× 10−3 9.18× 10−4 1.95× 10−3 1.80× 10−3

70 2.11× 10−3 1.49× 10−3 3.46× 10−3 2.27× 10−3

case, the proposed method still improves the performance,
even though the improvements are lower. However, this is
an expected behavior, since the sinusoidal photonic activation
is closer to the behavior of the ReLU function, which is
the activation function He initialization targets. Therefore, in
all evaluated cases, i.e., different fiber lengths and activation
functions, the proposed method improves the evaluation loss.

V. CONCLUSION

In this work, we presented a trainable initialization method
for photonic neural IM/DD systems that takes into account
easily saturated activation functions that are often used in
PNN, data distribution and corruption that occurs in the
signal in optical channels due to fiber dispersion and other
noise sources. The experimental results, that include evalua-
tion using different initialization schemes and fiber lengths,
demonstrate that the proposed initialization method can sig-
nificantly increase the system’s performance, highlighting its
effectiveness.

Acknowledgment: This project has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871391 (PlasmoniAC).
This publication reflects the authors’ views only. The European
Commission is not responsible for any use that may be made
of the information it contains.

REFERENCES

[1] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, 2015.

[2] T. O’Shea and J. Hoydis, “An introduction to deep learning for the phys-
ical layer,” IEEE Trans. on Cognitive Communications and Networking,
vol. 3, no. 4, pp. 563–575, 2017.

[3] S. Dörner et al., “Deep learning based communication over the air,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1,
pp. 132–143, 2018.

[4] G. Dabos et al., “End-to-end deep learning with neuromorphic photon-
ics,” in Integrated Optics: Devices, Materials, and Technologies XXV,
vol. 11689, International Society for Optics and Photonics. SPIE, 2021,
pp. 56 – 66.

[5] N. Passalis et al., “Training noise-resilient recurrent photonic networks
for financial time series analysis,” in 2020 Proc. of the European Signal
Processing Conf. (EUSIPCO), 2021, pp. 1556–1560.

[6] G. Mourgias-Alexandris et al., “A silicon photonic coherent neuron
with 10gmac/sec processing line-rate,” in Proc. of the Optical Fiber
Communications Conf. and Exhibition (OFC), 2021, pp. 1–3.

[7] B. Karanov et al., “End-to-end deep learning of optical fiber communica-
tions,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4843–4855,
2018.

[8] M. H. Eiselt et al., “Direct detection solutions for 100g and beyond,”
in Optical Fiber Communication Conf. Optical Society of America,
2017, p. Tu3I.3.

[9] P. J. Freire et al., “Performance versus complexity study of neural
network equalizers in coherent optical systems,” Journal of Lightwave
Technology, vol. 39, no. 19, p. 6085–6096, Oct 2021.

[10] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017, pp. 1–12.

[11] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Frontiers in
Neuroscience, vol. 5, p. 73, 2011.

[12] Y. Shen et al., “Deep learning with coherent nanophotonic circuits,”
Nature Photonics, vol. 11, no. 7, p. 441, 2017.

[13] N. Pleros et al., “Compute with light: Architectures, technologies and
training models for neuromorphic photonic circuits,” in Proc. of the
European Conf. on Optical Communication (ECOC), 2021, pp. 1–4.

[14] G. Giamougiannis et al., “Silicon-integrated coherent neurons with
32gmac/sec/axon compute line-rates using eam-based input and weight-
ing cells,” in Proc. of the European Conf. on Optical Communication
(ECOC), 2021, pp. 1–4.

[15] M. Moralis-Pegios et al., “Photonic neuromorphic computing: Archi-
tectures, technologies, and training models,” in 2022 Optical Fiber
Communications Conf. and Exhibition (OFC), 2022, pp. 01–03.

[16] X. Lin et al., “All-optical machine learning using diffractive deep neural
networks,” Science, vol. 361, no. 6406, pp. 1004–1008, 2018.

[17] G. Mourgias-Alexandris et al., “An all-optical neuron with sigmoid
activation function,” Opt. Express, vol. 27, no. 7, pp. 9620–9630, Apr
2019.

[18] G. Mourgias-Alexandris et al., “l response-aware photonic neural net-
work accelerators for high-speed inference through bandwidth-limited
optics,” Opt. Express, vol. 30, no. 7, pp. 10 664–10 671, Mar 2022.

[19] G. Mourgias-Alexandris et al., “25gmac/sec/axon photonic neural net-
works with 7ghz bandwidth optics through channel response-aware
training,” in 2021 European Conf. on Optical Communication (ECOC),
2021, pp. 1–4.

[20] M. Moralis-Pegios et al., “Neuromorphic silicon photonics and
hardware-aware deep learning for high-speed inference,” Journal of
Lightwave Technology, pp. 1–1, 2022.

[21] N. Passalis et al., “Training deep photonic convolutional neural networks
with sinusoidal activations,” IEEE Trans. Emerging Topics in Computa-
tional Intelligence, pp. 1–10, 2019.

[22] X. Glorot et al., “Deep sparse rectifier neural networks,” in Proc. of
the International Conf. on Artificial Intelligence and Statistics. JMLR
Workshop and Conf. Proc., 2011, pp. 315–323.

[23] R. Pascanu et al., “On the difficulty of training recurrent neural net-
works,” in Proc. of the International Conf. on Machine Learning, 2013,
pp. 1310–1318.

[24] K. He et al., “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” 2015.

[25] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. of the International Conf. on
Artificial Intelligence and Statistics, 2010, pp. 249–256.

[26] A. N. Tait et al., “Neuromorphic photonic networks using silicon
photonic weight banks,” Scientific Reports, vol. 7, no. 1, pp. 1–10, 2017.

[27] S. Pitris et al., “O-band energy-efficient broadcast-friendly interconnec-
tion scheme with sipho mach-zehnder modulator (MZM) & arrayed
waveguide grating router (AWGR),” in Proc. of the Optical Fiber
Communication Conf. Optical Society of America, 2018, p. Th1G.5.

[28] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons,
2012, vol. 222.

[29] N. Tishby and N. Zaslavsky, “Deep learning and the information bot-
tleneck principle,” in Proc. of the IEEE Information Theory Workshop,
2015, pp. 1–5.

[30] L. Paninski, “Estimation of entropy and mutual information,” Neural
computation, vol. 15, no. 6, pp. 1191–1253, 2003.

[31] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

1735


