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Abstract—Sensor arrays with simple geometries play an im-
portant role in solving direction of arrival estimation and source
separation problems. To reduce the number of sensors used,
nonuniform linear and rectangular array geometries have been
proposed. Unlike the case of uniform linear and rectangular
arrays, identifiability conditions for direction of arrival esti-
mation and source separation using nonuniform linear and
rectangular arrays are not well-studied. Based on rank properties
of Fourier matrices and tools from algebraic geometry, we
present generic identifiability conditions for direction of arrival
estimation and source separation problems when nonuniform
linear and rectangular array geometries are used. Furthermore,
based on properties of bilinear factorizations subject to polyno-
mial/monomial equality constraints, we also briefly discuss how
to obtain deterministic identifiability conditions.

Index Terms—Array processing, nonuniform linear array,
direction of arrival estimation, source separation, nonuniform
rectangular array, harmonic retrieval, tensor, canonical polyadic
decomposition, identifiability, missing sensors.

I. INTRODUCTION

In this paper we revisit the classical array processing model
in which R signals impinging on an array composed of I
sensors located on a plane such that the output of the ith
sensor at the kth observation is

xik =

R∑
r=1

sr (k − τri) , (1)

where τri denotes the delay between the ith sensor and the
rth source. Assume that the sources are located in the far-
field and that the narrowband assumption holds. Under these
assumptions the array response vector associated with the rth
source can be expressed as

ar = [e−iωcbT
r p1/c, . . . , e−iωcbT

r pI/c]T ∈ CI , (2)

where i =
√
−1, ωc is the carrier frequency, pi ∈ R2 is

position of the ith sensor (in Cartesian coordinates), br =
[sin(ϕr) cos(θr), sin(ϕr) sin(θr)]

T is the bearing vector in
which θr and ϕr denote the azimuth and elevation angle,
respectively, c is the speed of propagation, and the product
bT
r pi/c corresponds to the propagation delay in (1) associated

with the ith sensor and the rth source, so that τri = bT
r pi/c.

Assume that K snapshots are available such that sr ∈ CK

denotes the signal vector associated with the rth source. Then
the observed data matrix admits the factorization

X = AST ∈ CI×K , A = [a1, . . . , aR] , S = [s1, . . . , sR] .
(3)

Depending on the application, the goal is to estimate the
azimuth and elevation angles {θr, ϕr} via A or to estimate the
signal matrix S. The former problem is known as Direction-Of-
Arrival (DOA) estimation while the latter problem is known
as source separation. To achieve these goals, either arrays with
simple geometries and/or signals with certain known properties
are used in practice. We mention the minimum redundancy
arrays [7], nonredundant arrays [17], nested arrays [8] and
co-prime arrays [15], where Nonuniform Linear Array (NLA)
geometries are used and the signal matrix S is assumed to be
columnwise orthogonal. Assuming that the temporal source
signals are random, mutually uncorrelated, zero-mean, and
the autocorrelation function of each source decays sufficiently
fast, columnwise orthogonality of S is attained asymptotically
as K → ∞. In this paper we will study the identifiabil-
ity properties of NLAs and Nonuniform Rectangular Arrays
(NRAs) when the impinging signals are non-orthogonal. More
precisely, we will only assume that S has full column rank.

The paper is organised as follows. Section II briefly reviews
the NLA and NRA models while Section III discuss their
connections to a type of decomposition that we will refer to
as Generalized Vandermonde Matrix Factorization (GMVF).
Based on the link between NLA/NRA and GVMF, we will in
Section IV present and discuss both generic and deterministic
identifiability conditions for the NLA and NRA models when
the signal matrix S has full column rank. Section V concludes
the paper.

II. NONUNIFORM LINEAR AND RECTANGULAR ARRAYS

Consider a Uniform Linear Array (ULA) [16], in which the
sensors are equispaced on a line. Typically “half wavelength
spacing” is used, meaning that dx = λ/2 is the unit measure
along the sensor axis (“x-axis”), where λ = 2πc

ωc
denotes the

signal wavelength. We will use this convention throughout
the paper. To reduce the number of sensors used, NLAs have

1736ISBN: 978-1-6654-6798-8 EUSIPCO 2022



been considered (e.g., [7], [8], [15], [17]), in which the array
response vectors ar in (3) are of the form

ar =
[
1 e−iωcdxm2 cos(θr)/c . . . e−iωcdxmI cos(θr)/c

]T
=

[
1 e−iπm2 cos(θr) . . . e−iπmI cos(θr)

]T
= [1 xm2

r . . . xmI
r ]

T ∈ CI , (4)

where midx is the distance between the reference sensor
(m1 = 0) and the ith sensor in the NLA in which mi ∈ N,
1 < m2 < · · · < mI and xr = e−iπ cos(θr). The vector ar is
a generalized Vandermonde vector and for this reason we call
(3) a generalized Vandermonde matrix factorization (GVMF),
as will be elaborated on in Section III. This is in contrast to
the ULA case where ar = [1 xr x2

r . . . xI−1
r ]T is a standard

Vandermonde vector. In DOA applications, we say that the
angles θ1, . . . , θR are identifiable if they can be determined,
observing only X. Similarly, in source separation applications,
we say that S is identifiable if it can be determined (up to in-
trinsic column scaling and permutation ambiguities), observing
only X. Unlike the ULA case, the identifiability properties of
the angles and the signal matrix are not well-understood in the
NLA case. However, if the signal matrix can be assumed to be
columnwise orthogonal, then a GVMF problem can in certain
cases be converted to a standard Vandermonde factorization
problem. In short, if S is columnwise orthogonal, then

XXH = AΛΛΛAH ⇔ vec(XXH) = (A∗ ⊙ A)vecd(ΛΛΛ), (5)

where ΛΛΛ = ST S∗ is a diagonal matrix, ∗ denotes the conjugate,
H denotes the conjugate-transpose, vec(XXH) denotes the
vectorization of matrix XXH , vecd(ΛΛΛ) denotes the vectoriza-
tion of the diagonal part of the diagonal matrix ΛΛΛ, and ⊙
denotes the Khatri–Rao (columnwise) Kronecker product. By
carefully choosing the integers m1, . . . ,mI in (4), a submatrix
of A∗⊙A corresponds to a Vandermonde matrix (e.g., [7], [8],
[15], [17]). This means that when S is columnwise orthogonal,
then (5) can, under certain conditions, be interpreted as a
classical single snapshot (K = 1) Vandermonde matrix factor-
ization problem for which identifiability results and algorithms
can be found in the literature. Note that in this paper we only
assume that S has full column rank, implying that relation (5)
is not satisfied and consequently the identifiability conditions
derived in for instance [8], [15] will no longer be satisfied.

A natural extension of the NLA that will also be considered
in this paper is the NRA, in which ar in (3) is of the form

ar = Ssel(cr ⊗ br) ∈ CL, (6)

where ⊗ denotes the Kronecker product, Ssel ∈ {0, 1}L×IJ is
a row-selection matrix and

br =
[
1 e−iπm2 cos(θr) sin(ϕr) . . . e−iπmI cos(θr) sin(ϕr)

]T
= [1 xm2

r . . . xmI
r ]

T ∈ CI , (7)

cr =
[
1 e−iπn2 sin(θr) sin(ϕr) . . . e−iπnJ sin(θr) sin(ϕr)

]T
= [1 yn2

r . . . ynJ
r ]

T ∈ CJ , (8)

in which xr = e−iπ cos(θr) sin(ϕr), yr = e−iπ sin(θr) sin(ϕr),
mi, nj ∈ N, 1 < m2 < · · · < mI and 1 < n2 <
· · · < nJ . Note that when br = [1 xr x2

r . . . xI−1
r ]T ,

cr = [1 xr x2
r . . . xJ−1

r ]T and Ssel = IIJ is the iden-
tity matrix, then (3) corresponds to the standard Uniform
Rectangular Array (URA) model. Identifiability conditions for
DOA estimation and source separation based on the URA
model can for instance be found in [5], [10], [11]. For special
NRA configurations, such as L-shaped arrays, identifiability
conditions can be found in [14]. However, the development
of dedicated identifiability conditions for DOA estimation and
source separation for the general NRA case has not received
much attention in the array processing literature.

Based on the link between GVMF and the NLA and
NRA models discussed in the next section we will propose
dedicated identifiability conditions for DOA estimation and
source separation when NLAs or NRAs are used and the signal
matrix S has full column rank.

III. GENERALIZED VANDERMONDE MATRIX
FACTORIZATION (GVMF)

A. Definition

The GVMF of matrix X ∈ FI×K is defined as follows

X = AST ∈ FI×K , (9)

where F denotes R or C depending on the application,
S ∈ FK×R and A ∈ FI×R is a generalized Vandermonde
matrix (GVM), defined next. Let {m1, . . . ,mI} be a set of
distinct integers with property 0 ≤ m1 < m2 · · · < mI and
let {x1, . . . , xR} be a set of distinct real or complex numbers,
depending on the application. We say that A is a GVM when

A =

 xm1
1 · · · xm1

R
...

. . .
...

xmI
1 · · · xmI

R

 ∈ FI×R. (10)

We call the elements in {x1, . . . , xR} the generators of A.
Observe that A can be interpreted as a punctured Vander-
monde matrix. Comparing (3) with (9) it is clear that the NLA
factorization with ar of the form (4) corresponds to a GVMF
in which the generators are of the form xr = e−iπ cos(θr). We
note in passing that the model (9) with real valued generators
with property xr < 0, ∀r ∈ {1, . . . , R} can potentially also be
of interest for chemometrics applications (e.g., [9]) involving
exponential decay functions when nonuniform sampling is
used.

B. Link to Canonical Polyadic Decomposition

The GVMF (9) of X can be interpreted as a basic Vander-
monde Matrix Factorization (VMF) with missing rows:

Y = DBST ∈ FJ×K , (11)

where J = mI , D ∈ {0, 1}J×J is a binary diagonal with
property (D)ii = 1 if i ∈ {m1, . . . ,mI} and (D)ii = 0
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otherwise, and B is a (scaled) Vandermonde matrix of the
form

B =


x1 · · · xR

x2
1 · · · x2

R
...

. . .
...

xJ
1 · · · xJ

R

 ∈ FJ×R. (12)

Note that X = RY, where R ∈ {0, 1}I×J is a row selection
matrix that selects the “observed” rows of Y. The shift-
invariance property of the Vandermonde matrix implies that

Z =

[
Y
Y

]
= DY(G⊙B)ST ∈ F2(J−1)×K , (13)

where Y = Y(1 : J − 1, :) ∈ F(J−1)×K , Y = Y(2 : J, :
) ∈ F(J−1)×K , B = B(1 : J − 1, :) ∈ F(J−1)×K , G =[

1 ··· 1
x1 ··· xR

]
∈ F2×R and DY =

[
D

D

]
∈ {0, 1}2(J−1)×2(J−1),

where and D = D(1 : J − 1, :) ∈ {0, 1}(J−1)×(J−1) and
D = D(2 : J, :) ∈ {0, 1}(J−1)×(J−1). From (13) we observe
that the GVMF of X can be interpreted as a canonical polyadic
decomposition (CPD) of a tensor that has missing fibers [12].
Identifiability conditions developed for the CPD of a tensor
that has missing fibers was also presented in [12] and can in
principle be used to obtain identifiability conditions for the
GVMF. However, they do not exploit that the “nonzero” part
of DB, corresponding to A in (9) is a GVM. In Section IV
we will develop identifiability conditions for GVMF that better
exploit the GVM structure of A, and are easy to check.

C. Extension to higher-order GVMF

Consider the following higher-order extension of (9):

X = AST = Ssel(C⊙B)ST ∈ FL×K , (14)

where A = Ssel(C ⊙ B) in which Ssel ∈ {0, 1}L×IJ is
a row-selection matrix, B ∈ FI×R and C ∈ FJ×R are
generalized Vandermonde matrices. (The extension to more
than two GVMs is analogous and will not be discussed.)
Comparing (3) with (14) it is clear that the NRA factorization
with ar of the form (6) corresponds to a GVMF in which
the generators of B are of the form xr = e−iπ cos(θr) sin(ϕr),
r ∈ {1, . . . , R} and the generators of C are of the form
yr = e−iπ sin(θr) sin(ϕr), r ∈ {1, . . . , R}.

IV. IDENTIFIABILITY CONDITIONS FOR GVMF

A. Generic identifiability conditions

Based on a property of the determinant of square gener-
alized Vandermonde matrices, the rank property of Fourier
matrices and the identifiability properties of structured bilin-
ear matrix factorizations with parsimonious parametrizations,
generic identifiability conditions for GVMF can be derived.
In more detail, our starting point is Theorem IV.1 which
guarantees the generic uniqueness of the following structured
decomposition of an I ×K matrix Y:

Y =

R∑
r=1

a(ζr)s
T
r , sr ∈ FK , ζr ∈ Fl, (15)

where the vector function a : Fl → FI is known and
constructed as explained below. We say that decomposition
(15) is generically unique if it is unique for a generic choice
of ζ1, . . . , ζR, i.e., unique for all {ζr}Rr=1 except for a set
of Lebesgue measure zero in Fl. The vector function a is
structured as follows:

a(·) = r(f(·)),
r(·) = (p1(·), . . . , pI(·)), (16)
p1, . . . , pI are polynomials in l variables,
f(·) = (f1(·), . . . , fl(·)),
f1, . . . , fl are functions analytic on Cl.

Let Jr ∈ FI×l and Jf ∈ Fl×l denote the Jacobian matrices of
r and f , respectively.

Theorem IV.1. [2, Theorem 1] Assume that
i) the matrix [s1, . . . , sR] has full column rank;

ii) there exists ζ0 ∈ Cl such that detJf (ζ
0) ̸= 0;

iii) the dimension of the subspace spanned by the vectors of
the form (16) is at least N̂ ;

iv) rankJr(x) ≤ l̂ for a generic choice of x ∈ Cl;
v) R ≤ N̂ − l̂ − 1.

Then decomposition (15) is generically unique.

We will use Theorem IV.1 to obtain generic identifiability
conditions for GVMF with generators of the form xr =
e−iπ cos(θr). Our result is not limited to this special case;
we will also consider GVMFs with real valued generators,
xr ∈ R. The following property of the determinant of square
generalized Vandermonde matrices attributed to Mitchell [6]
will be used to obtain N̂ in Theorem IV.1 when A is a
generalized Vandermonde matrix with real generators.

Theorem IV.2. [3, Theorem 5], [1, Theorem 3] Consider the
square generalized Vandermonde matrix A ∈ FR×R of the
form (10) with I = R. Then the determinant of A is equal to

det(A) =
(∏
i>j

(xi − xj)
)
S(x1, . . . , xR), (17)

where S(x1, . . . , xR) =
∑

k ckx
pk,1

1 · · ·xpk,R

R is a symmetric
polynomial in x1, . . . , xR, with nonnegative coefficients ck.
Moreover, the sum of the coefficients of S(x1, . . . , xR) is given
by ∑

k

ck =

∏
R≥i>j>0(mi −mj)∏

R>i>j≥0(i− j)
. (18)

Similarly, the following rank property of Fourier matrices,
which according to [4] is attributed to Chebotarev, will be used
to obtain N̂ in Theorem IV.1 when A is a generalized Van-
dermonde matrix with complex valued unit norm generators
|xr| = 1, i.e., xr = e−iπ cos(θr).

Theorem IV.3. [3, Theorem 6], [1, Theorem 4] Consider
the Fourier matrix Fp ∈ Cp×p with entries (Fp)ij = ωij ,
0 ≤ i, j < p, where ω = ei2π/p. If p is a prime number, then
the Fourier matrix Fp does not contain any singular square
submatrix.
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We are now ready to state a generic identifiability condition
for GVMF.

Proposition IV.4. Consider the GVMF of X ∈ FI×K given by
(9), where A ∈ FI×R is a generalized Vandermonde matrix of
the form (10) with F = R or F = C and x1, . . . , xR ∈ R, or
x1 = e−iπ cos(θ1), · · · , xR = e−iπ cos(θR) with θ1, . . . , θR ∈ R,
respectively. If S is full column rank, and

R ≤ I − 2, (19)

then the GVMF of X is generically unique.

Proof. Consider the conditions of Theorem IV.1:
i) We assume that the unstructured matrix S = [s1, . . . , sR]

has full column rank, which is generically true when R ≤ K.
ii) Consider first the case where x1, . . . , xR ∈ R. De-

fine the functions f(ζ) = ζ : R → R and r(z) =
(zm1 , zm2 , . . . , zmI ) : R → RI . The columns of A are sam-
pled values of a(ζ) = r(f(ζ)) at points ζ1 = x1, . . . , ζR =
xR. The Jacobian of f is equal to 1, i.e., it is not identically
zero.

Consider now the case where |x1| = · · · = |xR| = 1.
As before, we define the functions f(ζ) = eiζ : R → C
and r(z) = (zm1 , zm2 , . . . , zmI ) : C → CI , so that the
columns of A are sampled values of a(ζ) = r(f(ζ)) at points
ζ1 = arg(x1), . . . , ζR = arg(xR), where arg(xr) denotes the
argument of xr. The Jacobian of f is equal to i arg(x)ei arg(x),
i.e., it is not identically zero.

Finally, we consider the case where x1 =
e−iπ cos(θ1), · · · , xR = e−iπ cos(θR). As before, we
define the functions f(ζ) = e−iπ cos(ζ) : R → C and
r(z) = (1, zm2 , . . . , zmI ) : C → CI , so that the columns
of A are sampled values of a(ζ) = r(f(ζ)) at points
ζ1 = θ1, . . . , ζR = θR. The Jacobian of f is equal to
iπ sin(θ)e−iπ cos(θ), i.e., it is not identically zero.

iii) Consider first the case where x1, . . . , xR ∈ R. Let Ã ∈
RI×I be a generalized Vandermonde matrix with real valued
generators x1, . . . , xI ∈ R with property 0 < x1 < x2 <
· · · < xI . Relations (17) and (18) in Theorem IV.2 ensure that
det(Ã) > 0, i.e., we can set N̂ = I and the vectors r(z) ∈ CI

span the whole space.
Consider now the case where x1 = e−iπ cos(θ1), · · · , xR =

e−iπ cos(θR). Pick a prime number p > mIR such that

−1 ≤ −2(R− 1)

p
<

−2(R− 2)

p
< · · · < −2

p
≤ 0.

Choose θr as follows

θr = cos−1(−2(r − 1)/p) ⇔ cos(θr) = −2(r − 1)/p).

Then

xmi
r = e−iπ cos(θr)mi = ei2πmi(r−1)/p = ωmi(r−1)

with ω = ei2π/p. Note that xmi
r corresponds to an entry of a

(p×p) Fourier matrix Fp when p > mIR. Theorem IV.3 now
tells us that the vectors r(z) ∈ CI span the whole space, i.e.,
we can set N̂ = I .

iv) We set l̂ = 1.

v) Condition holds since R ≤ N̂ − l̂ − 1 = I − 2.

Note that condition (19) is very close to a necessary
bound for the case where S has full column rank, which
is R ≤ I − 1 [14, Theorem III.3]. In the context of array
processing, Proposition IV.4 tells us that DOA estimation and
source separation using a NLA is generically possible when
R ≤ I − 2 and R ≤ K. Interestingly, this bound almost
coincides with the necessary and sufficient generic bound for
the ULA case when S has full column rank (implying R ≤ K
), which is R ≤ I − 1 (e.g., [11]).

Proposition IV.5 below is an extension of Proposition IV.4
to the NRA case where the generators are of the form xr =
e−iπ cos(θr) sin(ϕr) and yr = e−iπ sin(θr) sin(ϕr).

Proposition IV.5. Consider the GVMF of X ∈ CL×K given
by (14), where B ∈ FI×R is a generalized Vandermonde
matrix with generators xr = e−iπ cos(θr) sin(ϕr), C ∈ FJ×R

is a generalized Vandermonde matrix with generators yr =
e−iπ sin(θr) sin(ϕr) and θr, ϕr ∈ R for all r ∈ {1, . . . , R}. If S
is full column rank, and

R ≤ L− 3, (20)

then the GVMF of X is generically unique.

Proof. We again consider the conditions of Theorem IV.1:
i) We assume that the unstructured matrix S = [s1, . . . , sR]

has full column rank, which is generically true when R ≤ K.
ii) Define ζ = [θ, ϕ]T and the vector functions

f(ζ) = (e−iπ cos(θ) sin(ϕ),−iπ sin(θ) sin(ϕ) ) : R2 → C2,

r(z1, z2) = Ssel




1
zn2
2
...

znJ
2

⊗


1

zm2
1
...

zmI
1


 : C2 → CL,

where Ssel ∈ {0, 1}L×IJ is the row-selection matrix in (14).
The columns of A are sampled values of a(ζ) = r(f(ζ)) at
points ζ1 = [θ1, ϕ1]

T , . . . , ζR = [θR, ϕR]
T . The determinant

of the Jacobian of f is equal to π2f1f2 sin(2ϕ), i.e., it is not
identically zero.

iii) We will show that the vectors r(z1, z2) ∈ CL span the
whole space, i.e., we can set N̂ = L. Observe that when
y = xmI+1, then
a = Ssel(c ⊗ b) = Ssel([1 yn2 . . . ynJ ]

T ⊗ [1 xm2 . . . xmI ]
T
)

= Ssel([1 x(mI+1)n2 . . . x(mI+1)nJ ]T ⊗ [1 xm2 . . . xmI ]T )

= Ssel[1 xm2 . . . xmI(mI+1)nJ ]T (21)

is a generalized Vandermonde vector with generator x. The
goal is now to choose pairs {θr, ϕr} such that an (R × R)
submatrix of Ssel(C⊙B) corresponds to an (R×R) submatrix
of a Fourier matrix Fp for some prime number p > LR.

We will select θr and ϕr such that for sufficiently large
prime number p > LR we have

cos(θr) sin(ϕr) = −2(r − 1)

p
⇔ (22)

sin(ϕr) = −2(r − 1)

p

1

cos(θr)
, (23)
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sin(θr) sin(ϕr) = − (mI + 1)2(r − 1)

p
⇔ (24)

sin(ϕr) = −2(r − 1)

p

(mI + 1)

sin(θr)
. (25)

From (23) and (25) we conclude that
1

cos(θr)
=

mI + 1

sin(θr)
⇔ tan(θr) =

sin(θr)

cos(θr)
= mI + 1. (26)

From (23) and (26) we conclude that by choosing the angles
as follows

θr = tan−1(mI + 1) and ϕr = sin−1

(
−2(r − 1)

p

1

cos(θr)

)
then, due to (22) and (24), we obtain
xmi
r = e−iπ cos(θr) sin(ϕr)mi = ei2πmi

(r−1)
p = ωmi(r−1), (27)

yni
r = e−iπ sin(θr) sin(ϕr)ni = ei2πni(mI+1)

(r−1)
p

= ωni(mI+1)(r−1) = xni(mI+1)
r , (28)

where ω = ei2π/p. From (21), (27) and (28), we can conclude
that A = Ssel(C ⊙ B) contains an (R × R) submatrix that
corresponds to an (R × R) submatrix of an (p × p) Fourier
matrix Fp when p > LR. Theorem IV.3 now tells us that the
vectors r(z1, z2) ∈ CL span the whole space, i.e., we can set
N̂ = L.

iv) We set l̂ = 2.
v) Condition holds since R ≤ N̂ − l̂ − 1 = L− 3.

Let us compare Proposition IV.5 for NRA with the best
known result for URAs when S has full column rank. In
[11] it was shown that DOA estimation and source separa-
tion problems can generically be solved using a URA when
min(IJ−3,K) ≥ R. Note that this corresponds to the bound
(20) for NRA when L = IJ . Hence, in terms of identifiability
we do not expect to lose anything when using an NRA instead
of a URA for DOA estimation or source separation.

B. Remark on deterministic identifiability conditions

We briefly mention that using the results in [13], determin-
istic identifiability conditions for GVMF can be derived that
exploit polynomial structure of the vectors a of the form (4)
or (6). Consider monomial equality constraints of the form

aα1
· · · aαLn

− aβ1
· · · aβLn

= 0, (29)

where aαl
denotes the αl-th entry of a, aβl

denotes the βl-
th entry of a and Ln denotes the degree of the monomials
in (29), where L1 > · · · > LN . Assume that vector a
satisfies Mn monomial equality constraints of degree Ln of the
form (29). Since S is assumed to have full column rank, we
can without loss of generality assume that S is nonsingular
(K = R). There exists a vector w ∈ CR such that air =
e(I)Ti Xw = e(I)Ti AST w, where e(I)i ∈ {0, 1}I denotes the
unit vector with unit entry in position i. Relation (29) implies
that

∏Ln

l=1(e
(I)T
pl,m Xw)−

∏Ln

l=1(e
(I)T
sl,m Xw) = p(n)T

Ln
·
(
w ⊗ · · · ⊗

w
)
= 0, where p(m)

Ln
=

⊗Ln

l=1(X
T e(I)pl,m)−

⊗Ln

l=1(X
T e(I)sl,m) ∈

CRL

. Stacking yields P(Mn,Ln) · (w ⊗ · · · ⊗ w) = 0, where
P(Mn,Ln) = [p(1)

Ln
, . . . ,p(Mn)

Ln
]T ∈ CMn×RLn . It can now be

verified if the dimension of

ker

 IRL1−L1 ⊗ P(M1,L1)

...
IRL1−LN ⊗ P(MN ,LN )

 ∩ π
(L1,R)
S

is minimal (i.e., R), where ‘ker’ denotes the kernel of the
matrix and π

(L1,R)
S denotes the set of vectorized (“flattened”)

versions of the symmetric tensors in the vector space of
all symmetric L1-th order tensors defined on CR. Then the
GVMF of X is unique; see [13] for details.

V. CONCLUSION

In this paper we studied the identifiability properties of the
GVMF. We presented generic identifiability conditions and
briefly explained how deterministic identifiability conditions
can be derived. The results demonstrate that when the signal
matrix has full column rank, then DOA and source identifica-
tion based on a NLA/NRA is possible under roughly the same
conditions as when an ULA/URA is used.
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