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Abstract—In this paper, we explore the problem of near-
field source localization in an unknown spatially colored noise
environment using an end-to-end neural network which is based
on deep residual learning. Specifically, the proposed approach
uses the multi-dimensional information of the array covariance
as input, and finally directly outputs the location information
of the near-field sources through the regression structure. The
architecture of deep neural network is well designed taking into
account the trade-off between the expression ability and compu-
tational complexity. In addition, benefiting from the method of
generating training data that combines the degree of separation
to traverse the spatial location, the proposed approach has a
robust performance for different location parameter separation.
The simulation results demonstrate that the proposed approach
outperforms the existing model-driven methods under various
conditions, especially for the adverse scenes with low SNRs, small
number of snapshots, or correlated sources.

Index Terms—near-field source localization, deep residual
learning, unknown spatially colored noise, regression structure

I. INTRODUCTION

Localization of near-filed sources plays a significant role
in various areas such as radar, sonar, wireless communica-
tions and speech processing (e.g., [1]–[4]). In past decades,
a large number of model-driven algorithms with the near-
field assumption have emerged, among which the maximum
likelihood estimation (MLE) method [2], the two-dimensional
multiple signal classification (2DMUSIC) method [3] and the
generalized ESPRIT based method (GESPRIT) [4] are very
popular. However, performances of these methods will be
significantly deteriorated in practical application.

In comparison, deep learning (data-driven) algorithms can
learn the complex nonlinear relationship between the location
parameters and the array outputs accurately, and have obvi-
ous advantages in localization problems, including no prior
knowledge of source statistical assumptions and robustness
to practical systems (e.g., [5]–[7]). At present, deep learning
has achieved great success in the field of source localization,
and its related algorithms can be roughly divided into three
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categories. The first one converts the localization problem into
a classification model by discretizing the spatial location area
(e.g., [7]–[10]). However, the resolution of most algorithms
is mostly 1◦ [7], [9] or even larger [8], [10], which is too
low a resolution to meet the requirements of high accuracy
and super-resolution of multiple overlapping signals. Apart
from these classification-based neural networks, estimating the
discrete spectrum by the regression neural network, and then
combining the peaks to obtain the position parameters is a
highly accurate algorithm (e.g., [11] and [12]). Unfortunately,
it is very difficult to extend the algorithm to solve the near-field
source localization, because it requires estimation of a highly
refined two-dimensional spectrum. Finally, some algorithms
for directly predicting location parameters using the regression
neural network have been studied in [13]–[15]. It should be
noted that most of the algorithms mentioned above study the
localization in a simple Gaussian noise environment. To the
best of our knowledge, the localization of near-field sources
in unknown spatially colored noise environment has not been
well studied in the literature of array processing.

Motivated by the above discussion, we propose an end-to-
end deep neural network for near-field source localization,
which is on the basis of deep residual learning [16] and
regression model. Distinguished from previous methods which
mainly focus on the localization in a simple noise environment,
we concentrate on the localization in unknown spatially col-
ored noise environment. The network we designed is trained
on multi-channel data, which are formed by complex-valued
data of array covariance matrix, and can predict the DOA and
range of near-field sources at the same time.

II. SIGNAL MODEL

Consider K narrowband near-field signals {sk(n)} imping-
ing on a uniform linear array (ULA). The ULA is assumed
to have M sensors with spacing d. The received noisy signal
{xm(n)} at the m-th sensor can be approximated as

xm(n) =

K∑
k=1

sk(n)ejτm,k + wm(n) (1)
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for m = 1, · · · ,M , where wm(n) is the additive noise, and
τm,k is the phase delay due to the time delay between the
reference sensor and the m-th sensor for the signal {sk(n)}
from the k-th near-field source, which is given by [17]

τm,k =
2π

λ

(√
r2k +m2d2 − 2rkmdsinθk − rk

)
(2)

where λ denotes the wavelength of signals, θk and rk are
the DOA and range of the k-th signal source. For the k-th
near-field signal source, rk is in the Fresnel region (i.e., rk ∈
(0.62(D3/λ)

1/2
, 2D2/λ), where D is the array aperture [18]).

Then the received data {xm(n)} can be rewritten compactly
by using vector-matrix notation as

x(n) = [x1(n), x2(n), · · · , xM (n)]
T

=

K∑
k=1

a(θk, rk)sk(n) + w(n)

= As(n) + w(n) (3)

where (·)T denotes the transposition, s(n) and w(n) are
the vectors of the incident signals and the additive noises
given by s(n) = [s1(n), s2(n), · · · , sK(n)]

T , and w(n) =
[w1(n), w2(n), · · · , wM (n)]

T respectively, while A is the ar-
ray response matrix defined by A , [a(θ1, r1),a(θ2, r2), · · ·
,a(θK , rK)], and a(θk, rk) is the array steering vectors which
can be expressed as

a(θk, rk) = [ejτ1,k , ejτ2,k , · · · , ejτM,k ]
T
. (4)

From (3), the array covariance matrix is given by

R = E{x(n)xH(n)} = ARsA
H + Q (5)

where E{·} represents the statistical expectation, (·)T de-
notes the Hermitian transposition, Rs , E{s(n)sH(n)}, and
Q , E{w(n)wH(n)} represent the covariance matrix of the
incident source signal and the noise, respectively. In practical
applications, the covariance matrix can only be estimated
using N snapshots, R̂ = 1/N

∑N
n=1 x(n)xH(n), which is

an unbiased estimator of R.
In this letter, we assume that the number of near-field

sources K is known, for the number can be estimated by
the existing number detection techniques in advance. Cases
such as the number of sources being unknown or being
estimated incorrectly are beyond the scope of this letter and
will be investigated in our future work. We concentrate on
the estimation of location parameters {θk}Kk=1 and {rk}Kk=1

of multiple near-field sources from the finite noisy array
data {x(n)}Nn=1. For this purpose, we design an estimation
framework based on deep residual learning, which is fed by
the array covariance R̂, and gives the DOAs and ranges at the
output. For simplicity, the proposed method is called DRN.

III. PROPOSED METHOD

A. Feature Selection and Labeling

While most methods use the feature structure that extracts
only part of the information of the covariance matrix [7],

Fig. 1. Architecture of the proposed DRN. The network is shown on the left
side, and the right side represents the Conv2D residual block structure.

[14]. We retain all the information of the covariance ma-
trix, including the real, imaginary, and the angular values of
the covariance matrix R̂, since it provides superior feature
extraction performance in the input as well as achieving
satisfactory estimation accuracy [9], [12]. The input data
X of the DRN is an M × M × 3 real-valued matrix,
whose first and second “channels” are given by X:,:,1 =
Re{R̂} and X:,:,2 = Im{R̂}, respectively. Whereas the third
“channel” corresponds to phase entries, which is defined as
X:,:,3 = ∠{R̂}. We set the label as the location parameter
set y (i.e., y = {θk, rk}Kk=1) to directly perform regression
estimation. Thus, the i-th training sample is composed of
pairs in the form (X(i), y(i)) leading to the training datasets
T = {(X(1), y(1)), (X(2), y(2)), · · · , (X(T ), y(T ))}.

B. The Proposed DRN’s Architecture

As shown in Fig. 1, the proposed DRN takes the multi-
channel information of the covariance matrix as the input.
The first three layers after the input are the convolution layer,
the batch normalization (BN) layer and the rectified linear
unit (ReLU) layer respectively, which can initially extract the
location features of the sources. For this convolution layer,
small filter of size 3 × 3 and “same” padding method are
used to capture detailed features while avoiding losing edge
information. In addition, k0 represents the number of its
convolution kernels. Then, in order to improve the positioning
accuracy of the network structure and solve the problem of
gradient disappearance caused by deep network, we design
a residual architecture consisting of P blocks in the middle
layers [16]. The right part of Fig. 1 shows the details of the
residual block, where k1 and k2 represent kernel numbers in
each convolution layer with “same” padding. Therefore, the
block output can be denoted as

Y p = α(Fp(Y p−1) + Fs(Y p−1)) (6)
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for p = 1, · · · , P , where Y 0 represents the input of the entire
residual architecture, Y p represents the output of the p-th
residual block, α is the activation function, and Fs plays the
role of the shortcut connection, which is simply used to match
the dimension for layer addition. And Fp can help realize the
identity mapping when Yp−1 is approximately optimal. Finally,
the residual block is followed by a flatten layer, which converts
the multi-dimensional data into one-dimensional data. The
results after converting are input to the fully connected layer
to realize the regression prediction capability of the network.

The goal of our network is to minimize the difference
between the predicted parameters and the true parameters.
The network uses the mean absolute error (MAE) as the loss
function, and its specific form is as follows:

L (ŷ, y) =
1

T

T∑
i=1

‖ŷi-yi‖1 (7)

where T is the total number of samples, ŷi and yi represent the
true and predicted parameters for the i-th sample respectively.

IV. NUMERICAL SIMULATIONS

A. Simulation Settings

A 9-element uniform linear array with quarter-wavelength
inter-element spacing is used to evaluate the proposed DRN al-
gorithm. In theory, multi-sources localization can be achieved
by adjusting the number of residual blocks and various pa-
rameters in our network, while for the sake of simplicity,
we take K = 2 as an example. Assume that two sources
impinging on the ULA come from the spatial scope of
[−30◦, 30◦] from the center of the array within the range
of 2λ to 4λ, which are in the Fresnel region of the array
aperture (1.75λ < r < 8.0λ). For the training datasets, a set
of angular separations {1◦, 2◦, · · · , 18◦} and a set of range
separations {0.2λ, 0.4λ, · · · , 1.0λ} are chosen. For each an-
gular separation ∆ϕ, the DOAs of the first and second source
are uniformly generated in the range of [−30◦, 30◦ − ∆ϕ]
and [−30◦ + ∆ϕ, 30◦] with a step of 1◦. Similarly, for
each range separation ∆ψ, the range of [2λ, 4λ − ∆ψ] and
[2λ + ∆ψ, 4λ] with a step of 0.2λ are uniformly selected
as the ranges of two sources, respectively. 50 examples are
generated to sample each combination of DOA and range.
Thus, a total of 1.854 million samples are collected in the
datasets, where the training and validation data account for
80% and 20%, respectively. The SNR of every sample is
randomly distributed between [-10dB, 20dB], or the number
of snapshots is randomly generated between [10, 1000]. And
the various datasets for the number of snapshots are of the
same size as for SNR. Furthermore, the sources spread in a
spatially colored noise environment, and its covariance matrix
is given by [20]

Qm,l = σ2
n exp{−0.5(m− l)2} (8)

After generating the training datasets, considering the trade-
off between the expression ability and complexity of the
network, we set two residual blocks with (k1, k2) chosen
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Fig. 2. The impact of (a) Loss function and (b) residual block

as (64, 64) and (32, 32), respectively. We select k0 = 128
at the same time. Then, the Adam optimizer is employed
to determine the optimal neural parameters with an initial
learning rate of 0.001 [19], and we reduce the learning rate by
the factor of 0.2 after each 10 epochs. Additionally we set the
maximum number of epochs for training to 30. The samples
are used for training with mini-batch size of 128 and the order
of the samples is shuffled during each epoch.

Based on the above simulation conditions, we investigate the
effect of some settings. As shown in Fig. 2(a), it shows the
range estimation performance of different loss functions (i.e.
MAE and MSE) under the network structure of two residual
blocks. We can see that as the SNR increases, the performance
of the MSE-based network is getting worse and worse than that
of MAE-based. The reason is that the MAE is more sensitive
to small errors than the MSE [15], which can lead to better
estimation performance. In addition, the MAE loss of networks
based on different numbers of residual blocks are shown in
Fig. 2(b). It is seen that the test performance improves with the
number of residual blocks increasing from 1 to 3. Note that
although the 2-block network performs slightly worse than
the 3-block network, it has a lower complexity. Therefore,
considering the accuracy and real-time performance of the
algorithm, the parameters set in the simulation are appropriate.

In order to verify the superiority of the proposed DRN al-
gorithm, the performance of the proposed method is compared
with the 2DMUSIC method in [3], the GESPRIT method in [4]
and the WLPM method in [21]. For the 2DMUSIC, the angular
and range grid spacings ∆θ and ∆r are fixed at ∆θ = 0.09◦

and ∆r = 0.09λ, respectively. The results are all based on
1000 independent trials.

B. DOA and Range Estimation Performance

Figure. 3 shows the RMSEs of the estimated DOAs and
ranges in terms of the SNR. In this simulation, two near-
field sources are located at (8.1◦, 2.19λ) and (13.5◦, 2.66λ)
respectively, which are not included in the training datasets.
The number of snapshots is fixed at 200, and the SNR is
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Fig. 4. RMSEs of the estimated (a) DOAs and (b) ranges versus the number
of snapshots

varied from -10dB to 20dB. Note that the proposed method
outperforms other algorithms, especially at the lower SNR
scenario. Furthermore, if the SNR level is used as the evalua-
tion standard, under the same RMSEs, the SNR level required
by the proposed method is at least lower than that of other
algorithms by nearly 15dB and 5dB in the estimated DOAs
and ranges, respectively.

Similarly, Fig. 4 displays the RMSEs of the estimated DOAs
and ranges with respect to the number of snapshots. In this
experiment, we attempt to estimate the location of two near-
field sources at (8.1◦, 2.19λ) and (19.8◦, 2.66λ). The SNR
is set as 10dB, while the number of snapshots varies from
10 to 1000. It can be seen from the figure that the proposed
method performs better than other algorithms regardless of
the number of snapshots. In particular, the proposed method
does not saturate with the increase in the number of snapshots,
which proves the positioning potential of the network. From
the above two figures, we can conclude that, the proposed
method can effectively solve the problems of model-driven
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Fig. 5. RMSEs of the estimated (a) DOAs and (b) ranges versus the angular
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Fig. 6. RMSEs of the estimated (a) DOAs and (b) ranges versus the range
separation

algorithms, which have a poor performance in the environment
of low SNRs and small snapshots.

Furthermore, we explore the effect of the angular separation
on the estimation performance in Fig. 5, where the SNR is
fixed at 10dB, and the number of snapshots is set at 200. In
this experiment, two near-field sources located in (6.4◦, 2.19λ)
and (6.4◦+∆θ, 2.66λ) are considered, where ∆θ is varied from
0◦ to 18◦ with ∆θ = 1◦. We can see that the robustness of
different angular intervals for the proposed method is better
than that of other algorithms. It is also worth noting that the
proposed method performs better in the small angular intervals
scenario compared with other algorithms.

Finally, we show the estimation performance under the
different range separations in Fig. 6. The simulation conditions
are similar to those in Fig. 5, except that two sources are
located at (6.5◦, 2.36λ) and (13.7◦, 2.36λ+∆λ), where ∆λ is
varied from 0.1λ to 1.0λ with ∆λ = 0.1λ. It is observed that
the proposed method also has the competitive performance
in different range intervals compared with other algorithms.
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TABLE I
MODEL TRAINING AND INFERENCE TIME

Proposed method GESPRIT 2DMUSIC WLPM
Train time 2h 4min 35s \ \ \
Test time 0.29ms 2.03ms 227.11ms 0.43ms

Furthermore, like angular separation, range separation also has
little effect on the estimation performance of our algorithm.

C. Impact of correlation coefficient

The impact of the source correlation coefficient on the
estimation performance is presented in Fig. 7. In particular, we
consider two correlated sources located in (7.2◦, 2.36λ) and

(13.7◦, 2.86λ) with RS =

[
1 ρ
ρ 1

]
, where ρ is the correlation

coefficient, and other simulation conditions are similar to those
in Fig. 5. We can see that the proposed method is not only
superior in the range estimation, but also is relatively robust
for different degrees of correlation, though the DOA estimation
performance of the proposed method and the WLPM algorithm
is similar in the large correlation coefficient.

D. The averaged training and inference time

To evaluate the computational complexity of the proposed
algorithm, we record the running time of various methods
in Table I (averaged by 1000 tests). Note that the proposed
algorithm has the smallest test time compared to other base-
lines methods. In addition, although the inference time of
the WLPM is close to that of our proposed algorithm, the
estimation performance of the WLPM is the worst among all
methods. The above results demonstrate the excellent real-time
localization capability of our algorithm.

V. CONCLUSION

In this paper, an end-to-end deep neural network based on
the residual learning and regression structure is designed for
near-field source location in an unknown spatially colored

noises. The proposed algorithm makes full use of the multi-
dimensional information of the array covariance, and can
accurately realize near-field source localization in near real-
time by rationally designing the network structure. Numerical
results show the proposed approach can yield a substantial
improvement in estimation accuracy and robustness in harsh
environments over the model-driven methods.
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