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Abstract—Non-uniform sparse arrays like nested arrays have
the ability to estimate the direction-of-arrival (DOA) of more
sources than the number of sensors. These arrays are designed
in such a manner such that their difference coarray is hole free.
Then, the increased degrees-of-freedom (DOF) of the coarray
is utilized to perform underdetermined DOA estimation. In
this paper, we extend the nested array configuration to three-
dimensional geometry to cover the entire azimuth and elevation
range. The proposed 3D sparse array is made from three
orthogonal nested array branches and the final structure is
composed of a direct sum of these three branches. We study the
structure and geometry of the difference coarray of the proposed
array and extend the coarray based DOA estimation algorithm
to 3D arrays. We propose a computationally efficient way to
construct the full rank coarray covariance matrix for 3D sparse
arrays. We also derive the unconditional Cramer-Rao Bound
(CRB) for 3D sparse array signal model. Simulation results show
the effectiveness and advantages of the proposed 3D structure.

Index Terms—Array Processing, 3D Nested Arrays, DOA
estimation, Difference Coarray, Spatial Smoothing, MUSIC

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is considered of great
importance in the area of array processing and finds ap-
plication in numerous fields such as sonar, radar, wireless
communication, acoustics, robot audition, massive MIMO etc.
[1]. Conventional DOA estimation algorithms like MUSIC are
capable of estimating the DOA of only (N −1) sources using
an array of N sensors. Recently, in [2], a configuration of non-
uniform linear sparse arrays (called the nested arrays) was
introduced along with a DOA estimation method that theo-
retically enables estimating O(N2) number of sources using
just N sensors [3]. Subsequently, many other linear sparse
array configurations have been designed [4]–[8] which are also
capable of performing underdetermined DOA estimation. In
[9], the idea of nested arrays was extended to two dimensions
(2D) to perform underdetermined DOA estimation in both the
azimuth and elevation directions. Other 2D sparse arrays and
techniques for underdetermined 2D DOA estimation [10]–[14]
have also been proposed. Sparse arrays on moving platforms
[15]–[17] have also been used for underdetermined DOA
estimation.

The drawback of linear arrays is that they can only provide
a coverage of 180◦ in the azimuth direction. Planar arrays
provide a complete coverage of the azimuth direction but only
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a 90◦ coverage in the elevation direction. Three dimensional
(3D) arrays have the ability to cover the entire azimuth and
elevation range. In [18], a 3D coprime sparse array was
introduced. In this paper, we introduce a form of 3D nested
array and analyze the structure of its difference coarray. We
then introduce an efficient technique to construct the coarray
covariance matrix and extend the coarray based algorithm to
perform underdetermined DOA estimation in the entire range
of azimuth and elevation angles. We also derive the CRB for
3D sparse array signal model.
Notations: (.)H , (.)∗ and (.)T denotes the conjugate transpose
operator, the conjugate operator and the transpose operator
respectively. E[.], ⊙, ⊗ and ∥.∥F represents the expectation
operator, the Khatri-Rao product, the Kronecker product and
the Frobenius norm respectively. IN represents an identity
matrix of size N × N and 0N×M represents a zero matrix
of size N ×M . ∪ represents the union operation.

II. PROPOSED ARRAY STRUCTURE

Let us consider a 3D grid with one corner lying at the origin
and let the spacing between two consecutive grid points in the
x, y and z directions be dx, dy and dz , respectively. Let us
now place non-uniform nested linear arrays [2] of the same
configuration along the x, y and z axis with the first element
of all the three nested arrays lying at the origin. A nested
array (more precisely a two-level nested array) is designed as
a concatenation of two ULAs: one inner and one outer. The
inner ULA has N1 sensors with a spacing of d1 and the outer
ULA has N2 sensors with a spacing of d2 = (N1 +1)d1. So,
the 3D co-ordinates of the sensors lying on the three axes are
given by (XN , 0, 0) ∪ (0, YN , 0) ∪ (0, 0, ZN ) where

XN ∈ {0, 1, . . . , N1 − 1}dx ∪
{N1, 2(N1 + 1)− 1, . . . , N2(N1 + 1)− 1}dx

YN ∈ {0, 1, . . . , N1 − 1}dy ∪
{N1, 2(N1 + 1)− 1, . . . , N2(N1 + 1)− 1}dy

ZN ∈ {0, 1, . . . , N1 − 1}dz ∪
{N1, 2(N1 + 1)− 1, . . . , N2(N1 + 1)− 1}dz

We consider a uniform 3D grid which means that the grid
spacing in all the directions is the same (dx = dy = dz). The
final co-ordinates of all the sensors in the the proposed 3D
array is given as

(xn, yn, zn),∀ xn ∈ XN , yn ∈ YN and zn ∈ ZN (1)
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Fig. 1. Structure of the proposed 3D array for N1 = N2 = 2. a) Shows the three branches of the 3D array, b) shows the intermediate structure formed
by the direct sum of the nested arrays in the x and y axes, c) shows the final structure and d) shows the difference coarray of the proposed 3D array (red
bubbles represent the coarray sensors) (note how the coarray is a completely filled uniform cube array).

These co-ordinates can be seen as the direct sum of XN , YN

and ZN represented by (XN⊕YN⊕ZN )1. So, the total number
of sensors in the proposed 3D nested array for a given N1 and
N2 (that makes up the three nested branches of the 3D array) is
(N1+N2)

3. Figure 1 shows the configuration of the proposed
array for N1 = N2 = 2.

1) 3D Array Signal Model: Let N = (N1 + N2)
3 denote

the total number of sensors in the proposed 3D nested array.
And let nn = [xn, yn, zn]

T , n ∈ {1, 2, . . . , N} denote the
position vector of the nth sensor. Now, let us consider L far-
field narrowband and pairwise uncorrelated sources impinging
on the array from directions given by the elevation and azimuth
angle pairs (θl, ϕl), l ∈ {1, 2, . . . , L}. The elevation angle in
calculated down from the positive z-axis (has a range of 180◦)
and the azimuth angle is calculated counter-clockwise from
the positive x-axis (has a range of 360◦). The unit position
vector pointing towards the DOA of the lth source is given by
rl = [sinθlcosϕl, sinθlsinϕl, cosθl]

T . Now, the signal collected
by the array can be written as

x(t) =
∑L

l=1
sl(t)a(θl, ϕl) + η(t) = As(t) + η(t), (2)

where s(t) is an L × 1 vector of source signal amplitudes
and η(t) is a vector of zero mean gaussian sensor noise
(each sensor is assumed to have uniform power of σ2

η and
considered uncorrelated to the sources and each other). The
steering matrix A can be written as [1] (λ is the wavelength
of the signals)

A = [a(θ1, ϕ1),a(θ2, ϕ2), . . . ,a(θL, ϕL)]

a(θl, ϕl) =
[
e−j 2π

λ rTl n1 , e−j 2π
λ rTl n2 , . . . , e−j 2π

λ rTl nN

]T
Now, the covariance matrix of the received signal is given as

R = E[xxH ] =
∑L

l=1
pla(θl, ϕl)a

H(θl, ϕl) + σ2
ηIN , (3)

= APAH +Rη, (4)

1The direct sum of three abelian groups A, B and C is another abelian
group (A ⊕ B ⊕ C) consisting of all the ordered pairs {(a, b, c)} where
a ∈ A, b ∈ B and c ∈ C.

where P and Rη are the signal and noise covari-
ance matrices respectively. For uncorrelated sources, P =
diag(p1, p2, . . . , pL) where pl represents the power of the lth

source. It is interesting to note that the elements in the array
covariance matrix depend on the pairwise differences of the
sensor locations as, from (3), its (u, v)th element is

[R]uv =
∑L

l=1
ple

−j 2π
λ rTl (nu−nv) + σ2

ηδ(u− v), (5)

So, the second-order statistics of the signal captured by the
array depends on the pairwise differences of the actual sensor
locations. A difference coarray can now be defined as a virtual
array whose virtual sensors locations are given by the set D =
{(nu−nv), ∀ u, v = 1, 2, . . . , N}. There maybe redundancies
in D owing to the same difference between two distinct pairs
of sensor locations (shown in Figure 2). However, what is
important is the fact that the number of virtual coarray sensors
(also referred to as the DOF of the coarray) is of the order
of O(N2). Since, the proposed 3D array is made up of three
linear nested array branches, its difference coarray depends
on the coarray of its branches. The difference coarray of the
nested array in the x-axis is a filled uniform linear array (ULA)
[2] with 2N2(N1+1)− 1 elements whose positions are given
by the set XD = {ndx, n = −M, . . . ,M} (M = N2(N1 +
1)−1). YD and ZD can be defined in a similar manner. Now,
the coarray sensor positions of the entire 3D nested array is
given by the direct sum (XD ⊕ YD ⊕ ZD). This is because
the coarray sensor locations are given by

(xn, yn, zn)− (xn′, yn′, zn′), (6)
∀ xn, xn′ ∈ XN ; yn, yn′ ∈ YN and zn, zn′ ∈ ZN

= (xn − xn′, yn − yn′, zn − zn′), (7)
= (xd, yd, zd), ∀ xd ∈ XD, yd ∈ YD and zd ∈ ZD. (8)

Therefore, the difference coarray of the proposed 3D array
is a contiguous uniform cube array with D = |D| =
(2N2(N1 + 1)− 1)

3 coarray sensors. The difference coarray
for an array with N1 = N2 = 2 is shown in Figure 1(d) and
as expected it has 1331 elements. It is noteworthy to highlight
the increased DOF of the coarray compared to the actual array
which is utilized for underdetermined DOA estimation.
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Fig. 2. Redundancies among the coarray sensors lying in the x-y plane (z =
0). Since there are 64 actual sensors, so there are 64 virtual coarray sensors
at the origin owing to the self differences. Similarly, the colour of the dots
indicate the number of redundancies in other locations. These redundancies
(along with the redundancies in the other planes) are the reason that the DOF
of the coarray is 1331 and not 642 = 4096.

2) 3D Coarray Signal Model and Spatial Smoothing: Now
that the structure of the difference coarray is known, we need
to figure out the signal received by the coarray. Since the
elements in R depends on the coarray, vectorizing it gives

z = vec(R) = vec

(
L∑

l=1

pla(θl, ϕl)a
H(θl, ϕl) + σ2

ηIN

)
= (A∗ ⊙A)p+ σ2

ηvec(IN )

= Āp+ σ2
ηi. (9)

Here Ā = (A∗ ⊙A) = [ā(θ1, ϕ1), · · · , ā(θL, ϕL)] acts as the
coarray steering matrix, p = [p1, p2, . . . , pL] is the vector of
signal powers and i = vec(IN ). The coarray steering vector
corresponding to the lth source can be expressed as

ā(θl, ϕl) = a∗(θl, ϕl)⊗ a(θl, ϕl). (10)

We can see that after removing the redundant rows, the length
of the coarray steering vector is the same as the number of
sensors (D) in the difference coarray. Comparing with (2), (9)
can be seen as the coarray signal model. Since the equivalent
signal for the coarray is the vector p containing the powers of
the signal, the coarray signal model is a single snapshot model.
As such, the rank of the coarray covariance matrix (CCM)
[zzH ] is 1. High resolution subspace-based DOA estimation
methods such as MUSIC operate by extracting the noise
subspace of the covariance matrix by performing eigen-value
decomposition (EVD). Thus, we cannot apply these methods
directly to the coarray and need to recover the rank of the
CCM before subspace based algorithms can be applied to the
coarray model. To do this, we perform a spatial smoothing type
operation [2], [19]. First, we once again remind that the differ-
ence coarray has virtual sensors located in three dimensions
at ({−M, . . . ,M}dx⊕{−M, . . . ,M}dy⊕{−M, . . . ,M}dz)
where M = N2(N1 +1)− 1. We can now divide this coarray
into (M +1)3 overlapping 3D subarrays, each with (M +1)3

coarray sensors. These subarrays have sensors located at

(−i+ 1 + n)dx, n = 0, 1, . . . ,M

(−j + 1 + n)dy, n = 0, 1, . . . ,M

(−k + 1 + n)dz, n = 0, 1, . . . ,M

where i, j, k ∈ {1, . . . , (M + 1)}. Let the vectorized signal
captured by the qth subarray be given by zq . Then, the
covariance matrix of the qth subarray is Rq = zqz

H
q . Taking

the average of the covariance matrices of the Q = (M + 1)3

subarrays gives

RSS =
1

(M + 1)3

(M+1)3∑
q=1

Rq (11)

The spatially smoothed RSS has a rank of (M + 1)3. So,
rank recovery of the CCM through the spatial smoothing
operation reduced the DOF of the difference coarray from
(2N2(N1 + 1)− 1)

3 to (M + 1)3 = (N2(N1 + 1))3. Taking
the average of (M + 1)3 matrices is computationally very
expensive. So, noting the three-fold toeplitz structure of the
CCM, we propose an additional efficient method to construct
a full rank CCM directly form the elements of coarray vector
z as laid out in theorem 1.

Theorem 1. The three-fold toeplitz matrix T defined as

T =


T0 TH

1 · · · TH
M

T1 T0 · · · TH
(M−1)

...
...

. . .
...

TM T(M−1) · · · T0

 , (12)

is hermitian and RSS = T2/(M + 1)
3. Here, each block in

T is a two-fold toeplitz matrix given by

Tx =


Tx0 TH

x1 · · · TH
xM

Tx1 Tx0 · · · TH
x(M−1)

...
...

. . .
...

TxM Tx(M−1) · · · Tx0


and each block in Tx is a toeplitz matrix made up of the ele-
ments of z as (here [z]x,y,z is the element in z corresponding
to the (x, y, z)th coarray sensor)

Txy =


[z]x,y,0 [z]x,y,−1 · · · [z]x,y,−M

[z]x,y,1 [z]x,y,0 · · · [z]x,y,−(M−1)

...
...

. . .
...

[z]x,y,M [z]x,y,(M−1) · · · [z]x,y,0


Proof. From (9), z is hermitian symmetric i.e. z = Jz∗ where
J is the anti-diagonal matrix with ones along the anti-diagonal
and zeros elsewhere.
Now, The hermitian of Txy can be written as

TH
xy =


[z]∗x,y,0 [z]∗x,y,1 · · · [z]∗x,y,M
[z]∗x,y,−1 [z]∗x,y,0 · · · [z]∗x,y,(M−1)

...
...

. . .
...

[z]∗x,y,−M [z]∗x,y,−(M−1) · · · [z]∗x,y,0


Since z = Jz∗, every element in TH

xy can be replaced with
corresponding elements in z which will result in TH

xy = Txy .
Therefore, TH = T. Now, from (11), we can define RSS as

RSS =
1

(M + 1)
3

(M+1)3∑
q=1

Jqzz
HJH

q (13)
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where Jq ∈ {0, 1}(M+1)3×D is a selection matrix which
selects the elements that make up the different subarrays from
the coarray signal vector z. Also, from the definition of T in
(12), it can be written as

T =
[
J1z J2z · · · J(M+1)3z

]
. (14)

Now, squaring the matrix T, we get

T2 = TTH

= J1z(J1z)
H
+ J2z(J2z)

H

+ · · ·+ J(M+1)3z
(
J(M+1)3z

)H
=

(M+1)3∑
q=1

Jqzz
HJH

q

= (M + 1)3RSS (15)

which is equal to RSS = T2/(M + 1)3 which concludes the
proof.

From theorem 1, the eigenvectors of T span the same
subspace as that of RSS. So, we can apply coarray MUSIC
algorithm to T whose spectrum is given by

S(θ, ϕ) =
1(

āH1 (θ, ϕ)EηEH
η ā1(θ, ϕ)

) , (16)

where ā1(θ, ϕ) is the steering vector of the first subarray
corresponding to i = j = k = 1 and Eη is the (M + 1)3 ×
((M + 1)3 − L) noise subspace of T. The spectrum S(θ, ϕ)
gives peaks at the location of the DOAs of the sources. So,
using only N sensors, we will theoretically be able to estimate
the DOAs of ((M + 1)3 − 1) sources using the proposed
array. In practical situations, the actual array covariance matrix
R is not available, so we use the sample covariance matrix
R̂ (which is the maximum likelihood estimate of R [1]) as
1
Γ

∑Γ
t=1 x(t)x

H(t) where Γ is the total number of snapshots.

III. CRAMER-RAO BOUND (CRB) ANALYSIS

In [20], a closed-form expression of the CRB is derived
for the case of 3D sensor array made from ULA branches.
However, the expression derived is only applicable to the
case when the number of sources is less than the number
of sensors. It fails for the underdetermined case. In [21], the
CRB expression was derived for the underdetermined case
but it is only applicable for linear arrays. In this section, we
derive the CRB for signal model (2) which will be applicable
to underdetermined DOA estimation using sparse 3D arrays.
Using (2), the vector of the parameters that are being estimated
is given by

γ = [θ1, · · · , θL, ϕ1, · · · , ϕL]
T
, (17)

Now, the (u, v)th term of the Fisher Information Matrix (FIM)
is given as [22]

FIMuv = Γ tr

[
∂R

∂γu
R−1 ∂R

∂γv
R−1

]
(18)

= Γ

[
∂z

∂γu

]H
(RT ⊗R)−1 ∂z

∂γv
. (19)

By denoting the derivatives of z with respect to γ as ∂z
∂γ =[

∂z
∂θ1

, · · · , ∂z
∂θL

, ∂z
∂ϕ1

, · · · , ∂z
∂ϕL

]
, the FIM can be written more

compactly as

FIM =

[
∂z

∂γ

]H
(RT ⊗R)−1 ∂z

∂γ
. (20)

Using (9), the derivative in (20) can be written as

∂z

∂γ
=
[
ĀdθP, ĀdϕP

]
, (21)

where P = diag(p), Ādθ = A∗
dθ⊙A+A∗⊙Adθ and Ādϕ =

A∗
dϕ ⊙A+A∗ ⊙Adϕ. Further,

Adθ =

[
∂a(θ1, ϕ1)

∂θ1
,
∂a(θ2, ϕ2)

∂θ2
, · · · , ∂a(θL, ϕL)

∂θL

]
, (22)

Adϕ =

[
∂a(θ1, ϕ1)

∂ϕ1
,
∂a(θ2, ϕ2)

∂ϕ2
, · · · , ∂a(θL, ϕL)

∂ϕL

]
. (23)

Now, because R is positive definite, (RT ⊗R)−1/2 exits. Let
F = [Fθ,Fϕ] where

Fθ =(RT ⊗R)−1/2ĀdθP, (24)

Fϕ =(RT ⊗R)−1/2ĀdϕP. (25)

It can be seen that FIM = Γ(FHF). So, finally,

CRB(γi) =
[
FIM−1

]
ii
=

1

Γ

[
(FHF)−1

]
ii

(26)

IV. SIMULATION RESULTS

In this section, we illustrate the advantages of the proposed
array by performing underdetermined DOA estimation. For the
simulations, we choose a 3D nested array with N1 = N2 = 2
as shown in Figure 1(c). The total number of sensors in the
array is (N1+N2)

3 = 64. The DOF of the coarray after spatial
smoothing operation is 216.

1) Coarray MUSIC Spectrum: We assume that L = 72
sources, all having unit power, impinge on the array with
directions given by the (θl, ϕl) pairs as

{(
30◦ + (i− 1) 120

◦

7 ,

30◦ + (j − 1) 300
◦

8

)
, i = 1, 2, . . . , 8, j = 1, 2, . . . , 9

}
. The

3D coarray MUSIC spectrum is shown in Figure 3. We can
see that although the original array only has 64 sensors, it is
providing distinct peaks for the 72 source DOAs. The peaks
become refined and the quality of the spectrum improves with
increasing number of snapshots. This is a huge advantage
as traditional 3D arrays with 64 sensors are not capable of
localizing more than 63 sources and their performance severely
degrades as they reach this theoretical limit.

2) RMSE performance versus SNR and snapshots: In
this section, we analyze the DOA estimation performance
of the 3D nested array while varying the SNR and the
number of snapshots. The performance metric is chosen to
be the root-mean-square-error (RMSE) which is defined as√

1
WL

W∑
w=1

L∑
l=1

(
ϕ̂lw − ϕl

)2
for the azimuth estimation (W

denotes the total number of Monte-Carlo runs and ϕ̂lw denotes
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(a) No. of snapshots = 500, SNR = 10
dB

(b) No. of snapshots = 2000, SNR =
10 dB

Fig. 3. Normalized 3D Coarray MUSIC spectrum showing the DOA estimate
of 72 sources using a 64 sensor 3D nested array. Note that the peaks become
more prominent as the number of snapshots increases.

the estimate of the azimuth angle of the lth source in the
wth Monte-Carlo run). RMSE for elevation estimation can be
defined in a similar manner. The DOAs of the sources are
the same as before. As a benchmark, we have compared the
performance of the proposed 3D nested array with a Uniform
Cube array having 125 sensors. Figure 4 shows the RMSE
performance. For each point on the plot, the total number
of independent runs was set to W = 500. In each of these
runs, the signal and noise vectors were randomly generated.
As the SNR and the number of snapshots increases, the error
decreases. In fact, even though the number of sensors in our
array is much less than the benchmark, the DOA estimation
performance starts to match the level of the benchmark for
higher values of SNR and snapshots.
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(b) SNR = 5 dB

Fig. 4. RMSE performance of 3D Coarray MUSIC for underdetermined DOA
estimation of 72 sources versus SNR and number of snapshots. The benchmark
was chosen as a 125 sensor uniform cube array and direct MUSIC was used
to calculate the benchmark DOAs.

V. CONCLUSION

A 3D sparse nested sensor array configuration is presented
that is capable of performing underdetermined source localiza-
tion. The 3D nested array is designed is such a manner that
its difference coarray is hole free and as such subspace-based
method can be applied after perfoming a 3D spatial smoothing
type operation to construct the coarray covariance matrix.
Comparing the performance of the proposed configuration
with dense arrays shows its advantages and the usefulness.
In the future, a general lattice based 3D nested array config-
uration will be studied. Another important direction would be

to use the proposed array for beamforming applications and
wideband sources.
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