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Abstract—This paper investigates the problem of noncoher-
ent direction-of-arrival (DOA) estimation using different sparse
subarrays. In particular, we present a Multiple Measurements
Vector (MMV) model for noncoherent DOA estimation based on
a low-rank and sparse recovery optimization problem. Moreover,
we develop two different practical strategies to obtain sparse
arrays and subarrays: i) the subarrays are generated from a main
sparse array geometry (Type-I sparse array), and ii) the sparse
subarrays are directly designed and grouped together to generate
the whole sparse array (Type-II sparse array). Numerical results
demonstrate that the proposed MMV model can benefit from
multiple data records and that Type-II sparse noncoherent arrays
are superior in performance for DOA estimation.

Index Terms—sparse subarrays, compressive sensing, direction
of arrival estimation, non-coherent subarrays

I. INTRODUCTION

In the last decade, the fields of sparse reconstruction,
Compressive Sensing (CS) and direction-of-arrival (DOA) es-
timation with arrays of sensors have been largely investigated
in applications involving sonar, radar and communications
[1]–[4]. In this sense, a great deal of research have been
dealing with sparse sensor arrays and sparse signal processing
techniques due to their remarkable performance improvements
in beamforming applications, as well as direction-of-arrival
(DOA) estimation [5]–[10].

In this sense, many different signal processing DOA esti-
mation techniques resort to sparse signal processing strategies,
since they present some advantages over standard approaches.
Indeed, they are able to recover the DOAs even for an
incredibly small amount of data records (even a single snaphot)
[11]. CS algorithms like Orthogonal Matching Pursuit (OMP)
and Iterative Hard Thresholding (IHT) have been widely used
to solve this problem [12], [13].

In addition to sparse models, the large development of
sparse linear arrays (SLA) or non-uniform arrays, have also
drawn interest of recent cutting-edge research, since they are
capable of recovering more DOAs than the number of physical
sensors with some additional processing (difference coarray,
for example). More recently, the advantages of SLAs have
been extended to subarrays applications [14]–[18].
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In this paper we investigate the problem of noncoherent
direction-of-arrival (DOA) estimation using sparse subarrays
with distinct local oscillators. In particular, we present a
Multiple Measurements Vector (MMV) model for noncoherent
DOA estimation based on a low-rank and sparse recovery
optimization problem. Moreover, we develop two different
practical strategies to obtain sparse arrays and subarrays: i)
the subarrays are generated from a main sparse array geometry
(Type-I sparse array), and ii) the sparse subarrays are directly
designed and grouped together to generate the whole sparse
array (Type-II sparse array). Numerical results demonstrate
that the proposed MMV model can benefit from multiple data
records and that Type-II sparse noncoherent arrays are superior
in performance for DOA estimation.

Paper structure: In Section II, the standard single snapshot
data model is presented. In Section III, the multiple snapshot
model is derived and a sparse recovery strategy is proposed.
Moreover, the idea of Type-I and Type-II arrays is introduced.
Section IV provides an analysis of the manifold structure
and the degrees of freedom. In Section V, the numerical
simulations demonstrating both approaches are exhibited and
discussed, whereas Section VI draws the conclusions.

Notation: S, a, a and A indicate sets, scalars, column
vectors, and matrices, respectively. |S| means the cardinality
of set S (number of elements). blkdiag(·) and supp(·) are
the block diagonal matrix and support set operators, respec-
tively, whereas vecd(·) is the diagonal extraction operator and
vec−1

a×b(·) is an operator that transforms a column vector into
a matrix with dimension a × b by stacking each a of its
elements into a different column sequentially. HD(·) is the
hard thresholding operator.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The representation of the data acquisition model with non-
coherent subarrays for a single snapshot (Single Measurement
Vector - SMV) is given by [19]

x(l) = e−jφlASl(θ)s + nSl , l = 1, . . . , L (1)

where φl is the l-th subarray phase shift, ASl(θ) ∈ CNl×D is
the l-th subarray manifold with geometry defined by the set of
integers Sl (normalized positions in terms of integer multiples
of d - minimum intersensor spacing), the l-th subarray has Nl
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sensors, and there are D impinging sources with normalized
directions given by θ ∈ [−1, 1)D (sine of DOAs - spatial
frequency), s ∈ CD is the source signal, x(l) ∈ CNl is the
l-th subarray received signal, and nSl is the subarray noise
vector. The noise and the source signal are drawn from a zero-
mean circularly complex multivariate Gaussian distribution.
The noise is white and the sources are uncorrelated. Remark:
as abuse of notation, we refer to the set S defining the sensors
locations as the array itself.

If we consider a sparse reconstruction model, i.e., the DOAs
are replaced by a search grid with g points, the model in (1)
can be recast in matrix form as

x = Γ(φ)AS(θ̃)s̃ + nS (2)

where x ∈ CN is the array received signal(
N = |S| =

∑L
l=1Nl

)
, θ̃ ∈ [−1, 1)g is the grid search vector

which contains the true normalized DOAs, S =
⋃L
l=1 Sl is

the set of integers that define the whole array geometry,
Γ(φ) ∈ CN×N is a matrix that accounts for the multiple phase
shifts for each noncoherent subarray such that φ ∈ [0, 2π)L,
AS(θ̃) ∈ CN×g is the overcomplete array manifold, s̃ ∈ Cg
is the sparse source vector with support set cardinality given
by | supp(s̃)| = D, and nS ∈ CN is the noise vector. The
phase shifts matrix Γ(φ) is defined as

Γ(φ) = diag (α∗
1IN1

, . . . , α∗
LINL

) (3)

where αl = ejφl is the phase shift associated to each
of the L noncoherent subarrays. Notice also that the array
received signal and manifold have the following matrix block
representation,

x =
[
(x(1))T , . . . , (x(L))T

]T
(4)

AS(θ̃) =
[
AT

S1(θ̃), . . . ,AT
SL(θ̃)

]T
(5)

Note that the set notation is extensively used in this paper to
emphasize the dependence of the equations from the subarray
geometries Sl. The problem that we would like to solve is to
find the support set of s̃, which directly determines the DOAs
from the grid θ̃, where both s̃ and φ are unknowns.

III. PROPOSED DOA ESTIMATION METHOD

In this section, we extend the convex optimization method
based on low rank and sparse recovery devised in [19] to
a multiple snapshots scenario considering two approaches to
generate the subarray geometries. In this sense, we employ
a multiple snapshots scenario with a double sparse signal
processing approach: sparse model and sparse array. To this
end, we introduce Type-I and Type-II Sparse Linear Arrays.

A. Sparse and low-rank recovery with multiple snapshots

The extended version of the SMV model in Eq. (2) for T
snapshots can be written in matrix form as the following MMV
model

X = ΓAS + N (6)

where
Γ = [Γ(φ1)| . . . |Γ(φT )] ∈ CN×NT (7)

A = blkdiag (A, . . . ,A) ∈ CNT×gT (8)

S = blkdiag (s̃1, . . . , s̃T ) ∈ CgT×T (9)

N = [n1, . . . ,nT] ∈ CN×T (10)

X = [x1, . . . ,xT] ∈ CN×T (11)

where A = AS(θ̃).
Recall that we have incorporated the additional constraint

that the phase shifts change from snapshot to snapshot and
between the subarrays. Thus, one would have LT different
phase shifts for L arrays. Notice also that the model in (6)
is a general case for the partially calibrated array scenario.
Indeed, it suffices to assume Γ(φt) = Γ(φ), ∀t = 1, . . . , T .
Moreover, since the matrices Γ, A, and S are sparse, addi-
tional signal processing techniques can be employed to reduce
the total cost when adopting the model.

In order to solve the SMV model in (2), the authors in [19]
proposed a convex optimization formulation derived from a
bilinear arrangement and a convex relaxation procedure. Their
algorithm is based on the solution of the following problem

minimize ‖G‖1,2 + ε‖G‖∗
subject to

∑L
l=1‖x(l) −ASl(θ̃)gl‖22 ≤ CMσ2 (12)

where G = [g1, . . . ,gL] ∈ Cg×L is a row-sparse optimization
variable. This problem can be effectively solved using the
software package CVX [20]. Moreover, G = s̃αH (rank-
one), which allows us to perform an SVD and recover a
proxy to s̃ as ŝ = σiûi, where ûi is the right-singular vector
corresponding to the largest singular value. Thus, the support
supp (̂s) determines the true directions from the search grid
θ̃. Indeed, since supp(ûi) = supp(ŝ), we propose to resort
only to ûi. Inspired by the work in [1], we recover each of
the proxies to the support sets of the solutions ŝt according to
the following:

U = blkdiag
(
û

(1)
i , . . . , û

(T )
i

)
(13)

After that, we collapse the columns and perform an inverse
vectorization operation such that E = vec−1

g×T
(
U1T

)
∈

Cg×T , which is ideally row-sparse. From that, we obtain the
squared energy associated to the spatial index for each row
of E and recover its pseudo-spectrum through vecd(EEH).
The peaks of the pseudo-spectrum should be used to recover
the estimated DOAs from the search grid. The algorithm is
summarized in Algorithm 1.

While this procedure can be considered costly and having
the disadvantage of not taking into account the synergy be-
tween the snapshots, we numerically verified that the algorithm
performs reasonably well when the data record is small to
moderate. However, if large amounts of data are available,
one could adapt the algorithm to incorporate the SOCP l1-
SVD technique for the multiple snapshots model [1]. On the
other hand, we also point out that breaking the original array
into subarrays has the potential of reducing the computational
burden associated to many signal processing operations.
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Algorithm 1: Multiple Snapshot Non-Coherent Low-
Rank and Sparse Recovery Algorithm

Input : Overcomplete array manifold A(θ̃), observed
data X, number of sensors for each subarray
Nl, grid θg ∈ Rg , number of sources D

1 T(0) = {g + 1}, h(0) = 0

2 for t← 1 to T do
3 solve (12) with xt

4 perform economy-size SVD on Ĝ and obtain û
(t)
i

5 Calculate E = vec−1
g×T

(
U1T

)
// Computes the grid support set

6 T = supp
(

HD

(
vecd

(
EEH

)))
Output: Estimated DOAs θ̂ = θ̃T

B. Type-I and Type-II array geometries

In this section, we introduce two approaches to tackle the
problem of noncoherent processing regarding the subarray
geometries. For the trivial case, we have the ULA geometry.
Since this geometry is uniform, if we split it into linear adja-
cent segments of arbitrary sizes, these segments are still ULAs
with a smaller number of sensors. However, for sparse arrays,
this is not necessarily true. In what follows, we systematize the
definitions of Type-I and Type-II Sparse Linear Arrays (Type-I
SLA and Type-II SLA).

Definition 1 (Type-I Sparse Linear Array). A Type-I Sparse
Linear Array (Type-I SLA) corresponds to an array of pre-
defined sparse geometry S. The subsets defining the subarray
geometries are generated from partitions Sl ⊂ S such that if
s ∈ Si and f ∈ Sj , i < j, then s < f .

Definition 2 (Type-II Sparse Linear Array). A Type-II Sparse
Linear Array (Type-II SLA) corresponds to a union of subar-
rays with predefined sparse linear geometries Sl (partitions of
the array geometry S). The set S1 defines the reference sub-
array. The remaining subarrays are derived from S1 through
Si = S∆i−1

i−1 , where ∆i−1 is a translation factor for all the
elements of Si−1 and is given by ∆i−1 = µ + κi−1. µ is the
normalized distance between subarrays (in terms of integer
multiples of d) and κi−1 is the aperture of the (i − 1)-th
subarray.

Notice that the definitions in both cases restrict the subarrays
such that they attend to the following rules: i) they do not
share any sensors (partitions are pairwise disjoint); ii) they
are collinear; and iii) the array is given by the union of the
subarrays

(
S =

⋃L
l=1 Sl

)
. Additionally, observe that if we

apply the additional constraint Nl = N/L (or κ is a constant
for all the subarrays), ∀l ∈ {1, . . . , L}, then the subarrays
derived from Type-II SLA become multiple invariant [17].

The key difference between both sparse array definitions
is that for Type-I SLA, the subarrays are generated from a
splitting of the array with a predefined sparse geometry. On

the other hand, for Type-II SLA, the array is generated by the
union of sparse linear subarrays with a predefined geometry.

To illustrate, consider the sparse geometry defined according
to the set SMRA = {0, 1, 3, 6, 13, 20, 27, 31, 35, 36}, which
corresponds to a Minimum Redundancy Array with N = 10
sensors [21]. We adopt L = 2 subarrays. The corresponding
Type-I array is the original array itself

(
SI-MRA = SMRA

)
and its subarrays are given by SI-MRA

1 = {0, 1, 3, 6, 13} and
SI-MRA

2 = {20, 27, 31, 35, 36}. On the other hand, consider
two MRAs with N = 5 sensors each given by SII-MRA

1 =
{0, 1, 4, 7, 9} and SII-MRA

2 = S∆1;II-MRA
1 = {10, 11, 14, 17, 19},

with translation factor ∆1 = 1 + (9 − 0) = 10. Thus,
SMRA = SI-MRA 6= SII-MRA.

From this, we conclude that signal processing techniques
can be employed in real time to split the arrays conveniently
(Type-I case). However, if we intend to keep all the already
well-established good properties for some geometries in gener-
ating the subarrays, we should pay attention to the fact that the
arrays should be defined a priori (Type-II). In our simulations,
we empirically have shown that Type-II SLAs are way better
than Type-I when estimating the DOAs from a noncoherent
processing perspective.

IV. ANALYSIS OF MANIFOLD STRUCTURE AND DEGREES
OF FREEDOM

A natural question that arises from the above introduced
(sub)array geometries is related to the manifold structure,
as well as the degrees of freedom (DoF) for a difference
coarray scenario [5], [7] (although this coarray structure is
not exploited in this paper). In this section, we shed some
light upon these two important aspects.

1) Type-I: Clearly, there is no a priori analytical relation
between the subarray manifolds, due to the fact that the
geometries change dramatically between subarrays. Also, the
number of DoF for the predefined geometry and its Type-
I counterpart is obviously the same, since both geometries
coincide. Moreover, there is no general rule to predict the DoF
associated to the subarrays. This requires an analysis case by
case for the sparse geometry that is chosen to be employed.

2) Type-II: Some analytical relations can be straightfor-
wardly derived. In this case, to simplify the equations, we
will assume that the subarrays are multiple invariant, i.e., they
attend the sufficient condition of having the same number of
physical sensors N/L and thus the same aperture. Using the
array manifold of the whole array expressed in matrix form,
we can write

AS =

[
AT

S1 ,
(
AS1Λ

∆
)T

, . . . ,
(
AS1Λ

(L−1)∆
)T]T

(14)

where we dropped the dependence of the manifolds on the
DOAs to simplify the notation. The matrix Λ is defined as

Λ = diag
(
ejπθ1 , . . . , ejπθD

)
(15)

The multiple exponents of Λ in (14) represent the subarrays
translations along the straight line and are assumed to be ∆ =
µ+ κ (see Definition 2).
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In what follows, we establish that the number of DoF for
Type-II arrays is upper-bounded by a function of the DoF of
the subarrays (sDoF), which can be theoretically calculated
for a variety of preconceived geometries.

Theorem 1. Consider a Type-II array with geometry as
defined in Definition 2 with equal-aperture subarrays. If
1 ≤ µ ≤ κ, then the number of DoF of the array S is upper-
bounded by L(sDoF− 1) + 2(L− 1)µ+ 1, where sDoF is the
number of DoF for each subarray. If µ > κ, then the number
of DoF is equal to (2L− 1)sDoF.

Proof. Let c(n) be a discrete-valued function that assumes the
value of 1 if there is a sensor at nd or 0 otherwise. This func-
tion for a Type-II array is given by c(n) = c1(n)+. . .+cL(n).
Since the subarrays are translated versions of the reference
array, cl(n) = c1(n − ∆l), where ∆l = (l − 1)∆. The
weight function associated to that array (counts the number
of spatial correlations with lag n is defined through [8]
w(n) = c(n)~c−(n), where c−(n) is the time reversal version
of c(n). Then, one can write

w(n) =

(
L∑
i=1

ci(n)

)
~

 L∑
j=1

c−j (n)


=

L∑
i,j=1

c1(n− (i− 1)∆) ~ c−1 (n− (j − 1)∆)

=

L∑
i,j=1

c1(n) ~ c−1 (n) ~ δ(n−∆i + ∆j)

=

L∑
i,j=1

w1(n−∆i + ∆j)

(16)

The number of DoF is the cardinality of the support of w(n).
This support set has always an odd number of elements, given
that w(n) is an even function. Clearly, from (16), the weight
function of the reference array w1(n) is repeated along the
domain with displacement factors given by ∆j − ∆i. Since
| supp(w1(n))| = sDoF and for µ > κ there is no superposi-
tion of the weight functions of the subarrays with a different
∆j − ∆i, then | supp(w(n))| = (2L − 1)| supp(w1(n))| ⇒
DoF = (2L − 1)sDoF. Note that there are 2L − 1 diagonals
in a L × L matrix representing all the possible ∆j − ∆i.
For 1 ≤ µ ≤ κ, the superposition implies that the support
set of w(n) ranges from −(L − 1)∆ − κ to (L − 1)∆ + κ.
Since κ = (sDoF-1)/2, the support set of w(n) has a
maximum number of elements equal to 2 [(L− 1)∆ + κ] + 1
or L(sDoF − 1) + 2(L − 1)µ + 1. The equality holds if the
difference coarray of the subarrays has no holes (no missing
lags), as it indeed happens for many geometries like Two-Level
Nested and (restricted) Minimum Redundancy Arrays.

V. SIMULATION

In what follows, we illustrate with computer simulations the
algorithm performance under different scenarios employing
Type-I and Type-II sparse arrays. For that, we employ Uniform

Linear Arrays (ULA), Two-level Nested Arrays (NAQ2), and
(restricted) Minimum Redundancy Arrays (MRA) [2], [8],
[21], [22]. Notice that the MRAs considered in this paper are
not zero-redundancy. Instead, they allow some repetition of
spatial correlations, but presents the largest hole-free differ-
ence coarray (restricted MRA) for a given number of physical
sensors.

The simulation scenarios adopt L = 2 subarrays with N =
6 sensors each, d/λ = 1/2, and µ = 1. The performance
curves are drawn by assessing the Root Mean Square Error

(RMSE) [2] RMSE =
√

1
DR

∑R
i=1‖θ − θ̂i‖22. We also add

that we use R = 500 Monte Carlo runs in order to have
well behaved curves and the phase shifts φt are drawn from
U(0, 2π) (uniform distribution) for each subarray, snapshot
and run. The sources DOAs are considered to be coming from
the following normalized directions: θ = [0, 0.2, 0.4, 0.6, 0.8].
The amount of data for the SNR curves is T = 10 snapshots
and SNR = 10 dB for the curves against the snapshots.

Firstly, we describe the two types of sparse arrays and
analyze their uniformly weighted beampattern. Fig. 1 shows
a comparison between the beampattern for Types I and II
SLA for multiple geometries, as well as the ULA. It can
be clearly seen that both sparse structures exhibit a very
particular response and Type-I SLAs have narrower main
lobes. Although this is a desirable feature to increase source
discrimination capabilities, notice that their sidelobes are not
as low as their Type-II counterparts. We also add that the ULA
has the worst beampattern mainlobe and sidelobe responses.
Then, in general we expect its performance to have some
important degradation in comparison to both types of sparse
arrays.

- /8 - /16 0 /16 /8
-15

-10

-5

-3

0

U
n

if
. 

W
e

ig
h

 B
e

a
m

 P
a

tt
e

rn
 (

d
B

)

Type I - NAQ2

Type II - NAQ2

Type I - MRA

Type II - MRA

ULA

Fig. 1. Beampattern for Type-I and Type-II arrays.

Fig. 2 shows the RMSE against the SNR. Clearly, Type-
II SLAs present a much better performance in comparison
to Type-I. Moreover, it is clear that the sparse arrays also
present an increased performance in comparison to the ULA
geometry. In our experiments, we have verified that this gap
in performance becomes more prominent as we increase the
number of snapshots. This can be explained by the larger
aperture that the sparse arrays have in comparison to uniform
arrays, whereas the increased performance of Type-II over
Type-I can be explained by the fact that the former preserves
all the good properties from the original array design.
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Fig. 2. RMSE performance curves against SNR for Type-I and Type-II arrays.
T = 10 snapshots. D = 5 sources located at θ = [0, 0.2, 0.4, 0.6, 0.8].

Fig. 3 shows a comparison between the different arrays
against the snapshots. It is clear that the benefits of sparse
arrays for noncoherent processing increase as we use larger
amounts of data. Again, the Type-II arrays have better perfor-
mance when compared to Type-I.
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Fig. 3. RMSE performance curves against snapshots for Type-I and Type-II
arrays. SNR = 10 dB. D = 5 sources located at θ = [0, 0.2, 0.4, 0.6, 0.8].

VI. CONCLUSION

In this paper, we have discussed noncoherent sparse arrays
and their use to perform DOA estimation. We have devised
an extension of a joint low-rank and sparse formulation tech-
nique to account for multiple snapshots in DOA estimation.
Moreover, we introduced the idea of generating the sparse
arrays through the splitting of a larger well-known sparse array
(Type-I) or through the gathering of sparse subarrays with
a predefined geometry (Type-II). Particularly, we have come
up with numerical evidence that Type-II arrays present better
performance for DOA estimation with noncoherent processing.
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