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ABSTRACT

In this paper, we consider the problem of estimating direc-
tion of arrivals (DOA) using a single snapshot of sparse linear
array (SLA); the employed SLA is a sampled version of a uni-
form linear array (ULA). For the estimation task, we propose
a two-step algorithm: (i) we first interpolate for the missing
samples of the SLA to form a complete ULA by convert-
ing the samples into Hankel matrix and solving a weighted
low-rank minimization. (ii) Next, we estimate the DOAs us-
ing a subspace method, like Prony. In step (i), the matrix
completion problem is approached by adding left and right
weight matrices to the Hankel matrix obtained by lifting the
antenna observations. Simulation results show that the pro-
posed method has superior accuracy in DOA estimation com-
pared to the other methods proposed in the literature, such as
atomic-norm minimization and off-the-grid approaches.

Index Terms— Direction of arrival; Matrix completion;
Non-uniform sampling; Off-the-grid DOA estimation; Super-
resolution.

1. INTRODUCTION

Estimating the direction of arrivals (DOA) using measure-
ments on sensor arrays is required in a variety of applica-
tions, spanning from radar and sonar applications to biomed-
ical engineering. Given its relevance, the DOA estimation
problem has been studied for decades. Estimation of the auto-
correlation function is among the primary methods for DOA
estimation when multiple snapshot measurements are avail-
able [1]. The advent of the compressed sensing (CS) allowed
for taking advantage of the natural sparsity of the sources in
certain domains (e.g., spatial domain) in order to reduce the
number of required snapshots to one [2], which is commonly
known as single snapshot DOA estimation. As the standard
compressed sensing methods are developed for sparse vec-
tors, a pre-defined grid for the targets had to be assumed in
[2]. In practice, however, the targets might not lie on the
grid which leads to grid mismatch error [3]. To alleviate
the mismatch error, various grid selection approaches are pro-
posed [4]; however, in this fashion, we can never fully remove
this type of error [5]. Recently, grid-less sparse DOA estima-

tion methods have been proposed in the literature that esti-
mate a sparse mixture of continuous single-frequency signals
using both the uniform linear arrays (ULA) [6] and the sparse
linear arrays (SLA) [7]. Although powerful, these methods
require a minimum angular separation between the direction
of sources. Another grid-less approach, EMaC, is introduced
in [8] that estimates DOAs from a SLA. Similarly, EMaC re-
quires a minimum angular source separation, but a smoother
one; hence, it is able to retrieve more sources under simi-
lar conditions, especially in challenging source setups (almost
co-located sources). In [8], a matrix completion method is de-
vised for the DOA estimation problem; in particular, the mea-
surements of a SLA are transformed into a Hankel-structured
matrix with missing samples. The missing elements corre-
spond to the ULA samples not included in the SLA. After
interpolating the missing elements (matrix completion), [8]
estimated the DOAs from the completed ULA. To improve
the performance of matrix completion underlying a SLA, an
adaptive non-uniform sampling method is proposed in [9] that
relies on a concept called leverage scores. A more practi-
cal and improved two-snapshot version of this method is pre-
sented in [10]: the first snapshot is employed to estimate the
leverage scores and decide for the most informative array el-
ements (not necessarily available among the samples). In the
second snapshot, the measurements at the determined array
elements are processed to estimate the DOAs. Note, how-
ever, that in most practical DOA estimation problems, the ar-
ray (SLA in this case) is fixed and could not be adaptively
changed. Leverage scores are also used in the matrix com-
pletion technique of [11]; the method transforms the scores
into weight matrices in a suitable way that are later used in a
weighted minimization task. It should be highlighted that the
methods uses the leverage scores as prior information.
Contributions: In this paper, we propose a single-snapshot
DOA estimation algorithms in which the leverage scores and
the DOA estimation are achieved over the same array posi-
tions. We should highlight that the previous approaches rely-
ing on leverage scores for DOA estimation relied on a mecha-
nism in which the antenna array elements could be adaptively
tuned, which is unfeasible in many practical scenarios. Un-
like the existing work on leverage scores, our method in this
work does not rely on leverage scores as prior knowledge.
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Instead, we design weight matrices tailored to the EMaC al-
gorithm that best match the existing array position based on
the leverage scores. Then, we solve a weighted nuclear-norm
minimization for matrix completion (transforming the SLA
into a ULA), and estimate the DOAs accordingly. For this
reason, we refer to the proposed approach as Weighted EMaC
(WEMaC). To solve the nuclear-norm minimization involved
in the matrix completion step, we introduce an alternating di-
rection method of multipliers (ADMM) scheme. Finally, to
find the DOAs, we apply prony’s method [12] on the ULA.
Our simulation results confirm that the proposed approach
outperforms some of the existing methods such as a grid-
based CS method (BP), EMaC, and atomic-norm minimiza-
tion (ANM).

2. SYSTEM MODEL AND NOTATIONS

Assume an array with m elements among n equi-distant lo-
cations (distance ds between each two neighbors) across a
line. We call this a SLA if m < n, and ULA if m = n.
The received signal with wavelength λ at the k-th element
of a SLA (or ULA) from a far-field source at angle ϕ with re-
spect to the array could be modeled as b ak(ϕ) where ak(ϕ) =
exp

(
− j 2πλ kds sin(ϕ)

)
is the phase shift of signals relative to

the reference element (e.g., the first) of the array, and b ∈ C
stands for the amplitude and initial phase of the signal. Con-
sequently, for r sources at angles ϕ1, . . . , ϕr, the received sig-
nal is given by

yk =
∑
ℓ∈[r]

bℓak(ϕℓ). (1)

It is common to define the continuous value τℓ := ds

λ sin(ϕℓ).
Now, the DOA estimation problem can be formulated as the
task of estimating the pairs {τℓ, bℓ}ℓ∈[r] from the set of obser-
vations yΩ = [yΩr

, . . . , yΩm
], where Ω ⊂ [n] consists of the

m available locations of SLA array elements.
Notation: Column vectors and matrices are denoted by low-
ercase and uppercase boldface letters, respectively (e.g. x
and M). Hd : Cn → Cd×(n−d+1) is the Hankel lifting
operator that maps the input vector x into a Hankel matrix
M = Hd(x), such that M(i,j) = x|i+j−1| In other words,

M = Hd(x), M(i,j) = x|i+j−1|, (2)

Hd† is the inverse Hankel operator. We denote the rank
operator, the Hermitian operator (i.e. conjugate-transpose),
the Frobenius norm and the nuclear-norm of a matrix X by
rank(X) , XH, ∥X∥F and ∥X∥∗, respectively. Also, 1x,Ω

refers to the indicator function where it equals to xi for i ∈ Ω
and infinity otherwise. PΩ : Cn → Cm with m ≤ n is the
projection operator that discards the elements of the input,
the indices of which are not inside Ω. n simply shows the set
{1, . . . , n}. We define eni as the ith canonical basis of Rn;

similarly, Ak =
Hd(en

i )
∥Hd(en

i )∥F
are basis matrices for the space

of Hankel matrices with size d× (n− d+ 1).

3. DOA ESTIMATION BY WEIGHTED MATRIX
COMPLETION

In WEMaC, we estimate the set {τℓ, bℓ}ℓ∈[r] from the ob-
served data yΩ, in three steps: (i) we first lift the observation
through the Hankel operator, then (ii) we reconstruct noise-
less measurements over the ULA through a weighted matrix
completion, and (iii) we finally estimate the DOAs by em-
ploying Prony’s method which performs well in absence of
noise. Under noisy settings, this last step could be replaced
with more robust approaches. A conceptual representation of
the proposed approach is provided in Fig. 1.

In step (ii), we make use of leverage scores which were
originally introduced in [9] for an adaptive sampling strategy.
The leverage scores roughly represent the importance of each
sample in the overall matrix completion problem. It is shown
that random sampling of matrix elements with probabilities
proportional to the leverage scores reduce the number of re-
quired samples for prefect recovery in standard matrix com-
pletion [9] and also Hankel matrix structures [10]. However,
leverage scores themselves depend on the full matrix (ULA
samples in our case) and their availability as prior informa-
tion is not feasible. In adaptive sampling techniques, one ob-
serves few matrix entries, approximates the leverage scores
and captures new samples based on the leverage scores.

As an alternative solution to prior knowledge, an adap-
tive sampling technique is proposed in [10] to estimate the
scores through the snapshots. One restriction of the method
is the need for multi-snapshots (at least two) which makes it
inapplicable in some practical settings. Here, we instead aim
to modify the reconstruction strategy based on the leverage
scores using the available samples. To do that, we introduce
two left and right weight matrices L and R and minimize the
rank (nuclear-norm) of LHd(x)R; the weight matrices are
tuned with respect to the log-likelihood of the sampling prob-
ability, so that the leverage scores are proportional to the sam-
pling distribution. In other words, we incorporate the weight
matrices to the Hankel structure matrix completion and pro-
pose the WEMaC for completion of the array as follows

ŷ = argmin
g∈Cn

∥LHd(g)RH∥∗ s.t. PΩ(g) = yΩ, (3)

where L ∈ Cd×d and R ∈ C(n−d+1)×(n−d+1). To solve the
optimization problem in (3), we need to find good candidates
for weight matrices L and R in the sense of leverage scores
for the weighted structure.

Definition 1. Assume L and R are complex square matrices
of size d × d and (n − d + 1) × (n − d + 1), respectively.
Let Ud×rΣr×r(V(n−d+1)×r)

H be the SVD of LHd(x)RH
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Fig. 1: The overview of the proposed DOA estimation method: WEMaC.

where its rank is r for x ∈ Cn. The weighted leverage scores
µk for each k ∈ [n] is defined as

µk :=
n

r
max{∥PU (Ak)∥2F, ∥PV (Ak)∥2F}, k ∈ [n], (4)

where PU and PV are projection operators that map a given
Y ∈ Cd×(n−d+1) into

PU (Y ) = LHU
(
UHLLHU

)−1

UHLY , (5a)

PV (Y ) = Y RHV
(
V HRRHV

)−1
V HR. (5b)

In [10], sample complexity of O
(∑n

k µkr
2 log3 (n)

)
is

shown to guarantee the perfect recovery using optimization
(3) by sampling each element of the ULA proportional to its
corresponding score. Let pk represent the probability of ob-
serving the k-th element of the array.To align the sampling
probabilities with the observed indices in Ω, we maximize the
likelihood of obtaining the current samples over the probabil-
ities {pk}k∈[n] i.e.

(∏
k∈Ω pk

)(∏
k ̸∈Ω(1 − pk)

)
. It is easy

to see that pk = 1, k ∈ Ω and pk = 0, k ̸∈ Ω maximizes
the likelihood; however, it is necessarily consistent with the
leverage scores e.g. [10, Theorem 1]. Instead, if we consider
the lower-bounds in [10, Theorem 1], the highest likelihood
happens if

pk =

{
1 k ∈ Ω
min {1 , c(r, n)µk} k ̸∈ Ω.

(6)

It should be noted that we expect c(r, n)µk to be small
for k ̸∈ Ω; otherwise, the overall likelihood shall not be
enough to consider Ω a typical outcome of the random sam-
pling. Consequently, we use the condition c(r, n)µk < 1
for tuning the weights; nevertheless, its validity should be
rechecked after tuning the weight matrices. We further ap-
proximate

∑
k ̸∈Ω log(1 − pk) ≈ −

∑
k ̸∈Ω pk for the case pk

is small enough which is valid for k ̸∈ Ω. Then, we determine
L,R by minimizing the log-likelihood as

L∗,R∗ =argmax
L,R

−
∑
k ̸∈Ω

pk ≡ argmin
L,R

∑
k ̸∈Ω

µk. (7)

Here, to compute µks in (4), we need to have access to the
matrices U and V of the optimal solution x which is unavail-
able. Both for the sake of simplicity and to solve this issue,

we restrict the weight matrices to be diagonal; this enables us
to invoke the following Lemma.

Lemma 3.1. Let left and right weight matrices be restricted
to non-negative diagonal matrices L=diag

(√
L1, . . . ,

√
Ld

)
,

and R = diag
(√

R1, . . . ,
√
Rn−d+1

)
, where Li for i ∈ [d]

and Rj for j ∈ [n − d + 1] are sorted in ascending order.
Then, the leverage scores in Definition 1 are bounded as

µkr

n
≤ max

{
∥LAk∥2F∑

i∈[N ] Li
,

∥∥AkR
T
∥∥2
F∑

j∈[N ] Rj

}
, (8)

where N = min
{
⌊ 1
∥UH∥2 ⌋, ⌊ 1

∥V H∥2 ⌋
}

.

Proof. Due to the page limitations, the proof is provided on-
line. 1

Based on Lemma 3.1, we can replace µks by their upper-
bound in (8). As this upper-bound remains unchanged by
constant scaling of the weight matrices, we impose ∥L∥2F =
n−d+1 and ∥R∥2F = d to provide uniqueness of the solution.
Therefore, (7) can be rewritten as

{Li}i∈[d], {Rj}j∈[n−d+1] = argmin
Li,Rj∈R+∑

k ̸∈Ω

max
{∑

i∈[d]

∑
i∈[n−d+1]Rj 1i≤k≤d+i−1

}
min{d,n−d+1,k,n−k+1}

s.t.
∑

i∈[d] Li = n− d+ 1,
∑

i∈[n−d+1] Rj = d.

(9)

We should emphasize that (9) is a convex optimization prob-
lem which can be solved tractably.

As shown in [13], the nuclear norm of matrix A, i.e.
∥A∥∗ can be replaced with the min

U ,V
∥U∥2F + ∥V ∥2F subject to

A = UV H. Accordingly, (3) transforms to

min
U ,V ,g∈Cn

∥U∥2F + ∥V ∥2F

s.t. PΩ(g) = yΩ, LHd(g)RH = UV H.
(10)

1See http://sharif.ir/∼aamini/Papers/EUSIPCO2022 Hankel.pdf.
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Fig. 2: The performance of different methods in DOA estimation of a challenging setup: among the 9 considered sources, two
pairs are almost co-located. The 360◦ angular space and received power from the targets are shown by the base circle and the
height of the bars, respectively.

Algorithm 1 Weighted Interpolation using ADMM

1: Input: Sampling indices Ω ⊂ [n], corresponding sam-
ples yΩ ∈ Cm, and parameter ρ for the augmented La-
grangian form.

2: Output: Completed Vector ŷ ∈ Cn.
3: procedure WEIGHTED INTERPOLATION(yΩ, ρ)
4: Solve (9) to find L and R
5: Solve ADMM problem in (11) (using ρ, L, and R as

its inputs) to find the interpolated ULA data ŷ
6: return ŷ
7: end procedure

To apply the ADMM technique, we build the augmented La-
grangian of the cost function as

Lρ(U ,V ,g,Λ) = ∥U∥2F + ∥V ∥2F + 1g,Ω

+ ρ∥LHd(g)RT −UV H +Λ∥2F, (11)

where the Lagrange multiplier Λ has the same size as Hd(g),
ρ is an arbitrary positive scalar, and 1g,Ω is the indicator func-
tion. For the ADMM, we should iteratively update U , V , g,
and Λ. Due to lack of space, the equations are also provided
in the manuscript containing the proof of Lemma 3.1. Note
that (10) is bi-linear in terms of U and V , but not necessarily
a convex problem overall. However, the ADMM is guaran-
teed to converge to correct result if the penalty parameter ρ is
sufficiently large [14, 15].

4. SIMULATIONS

To evaluate the performance of proposed method WEMaC,
we compare it with ANM [7], EMaC [8], and BP meth-
ods which are single-snapshot DOA estimation approaches.
ANM and EMaC, similar to the WEMaC, consist of two
steps: (i) an interpolation step to reconstruct the ULA out-
put and (ii) an estimation step of the DOAs by applying a
super-resolution method (such as [6] or [12]). Therefore,
we analyze the performance of the algorithms in terms of
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Fig. 3: The DOA recovery (solid curves) and the SLA inter-
polation performance (dashed curves) in terms of normalized
mean-square error are depicted with respect to the array size.
A source setup with 6 sources with two pairs of almost co-
located sources are considered.

both (i) the mean-square error of array interpolation and (ii)
the DOA estimation accuracy. We further study the effect
of actual array size (or the number of elements m) on the
performance of the algorithms. In our simulations, we set the
spacing between adjacent array elements in the ULA as λ/2
where λ is the wavelength. We choose n to be an odd integer
and set the pencil parameter d such that the resulting Hankel
matrix is a square (this is possible for odd n). The SLA is
constructed by uniformly sampling the ULA in all simula-
tions. For the BP grid-based method, we uniformly divide
the interval [−1, 1] into 212 bins. This interval speaks for the
sin-transformed angles.To measure the estimation accuracies,
we call the estimated angle θ̂ of a source at θ successful if
| sin(θ) − sin(θ̂)| ≤ 0.005. Furthermore, in the ADMM
method, parameter ρ = 103 is chosen as a large number.
DOA Estimation: The SLA array is constructed by choos-
ing m = 25 locations uniformly at random from 101 possible
locations of the ULA array. As a challenging scenario, we
consider 9 sources, two pairs of which are almost co-located.
The ground-truth DOAs and the estimated ones are plotted in
Figure 2 where the based circle and the height of bars indi-
cate the angles and powers, respectively. We observe that the
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existing methods not only are unable to detect or discrimi-
nate the almost co-located sources, but also they do estimate
considerable ghost sources. At the same time, WEMaC man-
aged to spot all sources and differentiate between the almost
co-located sources.
Effect of number of antennas: In this section, we inves-
tigate the performance of WEMaC, EMaC, ANM, and BP
algorithms in terms of array interpolation and DOAs recov-
ery versus the number of array elements. We consider an
array with aperture size 100λ/2 and form the SLA with
10 to 34 elements which are randomly chosen from the
ULA with uniform probability. Further, we consider a de-
manding source setup with 6 sources located at [−60.48◦,
−45.69◦, −16.70◦, −15.51◦, 19.44◦, 20.66◦] (two pair of
them are seemingly co-located) with corresponding ampli-
tudes [3.35, 2.30, 3.16, 2.07, 3.68, 2.37]. Each curve repre-
sents the results averaged over 100 random realizations of the
SLA element selection.

The percentage of DOA recoveries in terms of the SLA
size (number of antennas) are depicted in Figure 3-(solid
lines). While EMaC based approaches outperform ANM and
BP, the performance of the WEMaC is a cut above the EMaC,
so that WEMaC detects all DOAs after a certain SLA size.
We also plot the normalized mean-square errors of the inter-
polation method (estimating the missing samples) in Figure 3
using dashed curves. We observe that the interpolation error
of WEMaC is better than EMaC and ANM almost for any
array size.

5. CONCLUSION

We proposed a single snapshot DOA estimation based on the
measurements of a SLA. The method works by first estimat-
ing the measurements at the missing elements of the array by
means of a weighted nuclear-norm minimization over a Han-
kel structure. Then, the completed measurements mimicking
a ULA are processed by the simple Prony’s method to find
the DOAs. The weight matrices in the interpolation stage are
tuned based on the leverage scores.
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de la dilatabilité des fluides élastiques et sur celles de la
force expansive de la vapeur de l’eau et de la vapeur de
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