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Aylin Taştan, Michael Muma and Abdelhak M. Zoubir
Signal Processing Group

Technische Universität Darmstadt
64283 Darmstadt, Germany

{atastan,muma,zoubir}@spg.tu-darmstadt.de

Abstract—Block diagonal structure of the affinity matrix
is advantageous, e.g. in graph-based cluster analysis, where
each block corresponds to a cluster. However, constructing
block diagonal affinity matrices may be challenging and
computationally demanding. We propose a new eigenvalue-
based block diagonal representation (EBDR) method. The idea
is to estimate a block diagonal affinity matrix by finding an
approximation to a vector of target eigenvalues. The target
eigenvalues, which follow the ideal block-diagonal model, are
efficiently determined based on a vector derived from the graph
Laplacian that represents the blocks as a piece-wise linear
function. The proposed EBDR shows promising performance
compared to four optimally tuned state-of-the-art methods in
terms of clustering accuracy and computation time using real-
data examples.

Index Terms—Block diagonal representation, affinity matrix,
similarity matrix, eigenvalues, subspace clustering

I. INTRODUCTION

The construction of an informative graph model plays
a crucial role to learn the intrinsic relationships hidden
in data and it has numerous applications such as in
clustering/classification [1–3], subspace learning [3, 4] and
semi-supervised learning [4–6]. In cluster analysis, the graph
model represents each feature vector as a vertex and describes
the association relationships using an affinity matrix in which
block diagonal structure is a commonly desired feature [7–11].

Partly motivated by the natural occurrence of block
diagonally structured affinity matrices in cluster analysis,
block diagonal representation has been the subject of intense
scientific research. Sparse representation is one of the most
common ways of constructing a block diagonal affinity matrix
[7–10]. An alternative way of constructing block diagonal
affinity matrices are p-nearest neighbor graphs which are
popular due to their computational simplicity [11]. However,
a major challenge for all these methods is to determine
the level of sparsity, i.e. the number of neighbors or the
regularization parameter. The choice of the sparsity level
has been researched by analyzing the similarity coefficients’
distribution [12], via supervised learning algorithms [13, 14],
geometric interpretations [15] and connectedness [16].

To the best of our knowledge, an unsupervised block
diagonal representation method that uses the eigenvalues of
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a block diagonal affinity matrix to deduce the sparsity level
has not been proposed in the literature. Therefore, we first
analyze the eigenvalues of the Laplacian matrix based on
an ideal block diagonal model (Theorem 1). Then, a key
idea is to define a vector that represents the blocks as a
piece-wise linear function (Corollary 1.1). This enables a
graph construction algorithm building upon the piece-wise
linear function that estimates the parameters of the unknown
target eigenvalue vector. The proposed eigenvalues-based
block diagonal representation (EBDR) method is applied to
p-nearest neighbor graph construction.

The remaining paper is organized as follows. Section II
contains our main theoretical results and the problem
formulation. Section III details the proposed EBDR method.
A performance evaluation in comparison to popular block
diagonal representation methods is the subject of Section IV.
Finally, conclusions are drawn in Section V.

II. THEORETICAL RESULTS AND PROBLEM FORMULATION

A. Motivation: Hidden Information in Eigenvalues
Suppose that X = [x1,x2, ...,xn] ∈ Rm×n with m denoting

the dimension and n the number of feature vectors can be
represented as a graph G = {V,E,W} where V denotes the
vertices, E represents the edges, and W ∈ Rn×n is a block
zero-diagonal symmetric affinity matrix1 whose similarity
coefficients within the blocks are generated using a similarity
measure2, while the matrix elements outside the blocks are
zero. Let L ∈ Rn×n denote the nonnegative definite Laplacian
matrix of the generalized eigen-problem

Lyi = λiDyi (1)

with associated eigenvalues in ascending order given by
0 ≤ λ0 ≤ λ1 ≤ ... ≤ λn−1. Here, yi denotes the eigenvector
associated with the ith eigenvalue λi, D∈Rn×n is a diagonal
weight matrix with overall edge weights di,i=

∑
j wi,j on the

diagonal and L=D−W.

Theorem 1. Let W ∈ Rn×n be a k block zero-diagonal
symmetric affinity matrix with blocks W1,W2, ...,Wk on its
diagonal. Each block Wi, i=1, ..., k is associated to a number

1A sparse matrix can be transformed into a block diagonal form using the
Reverse Cuthill-McKee (RCM) algorithm [17].

2E.g. for cosine similarity wi,j = x⊤
i xj , i ̸= j s.t. ∥xi∥2 = 1, ∥xj∥2 = 1

where ∥.∥2 denotes the ℓ2 norm.

1761ISBN: 978-1-6654-6798-8 EUSIPCO 2022



(a) G = {V,E,W}

2 71 120 149

0

0.2

0.4

0.6

0.8

1

1.2

(b) λ associated with Eq. (1)

Fig. 1: Examplary illustration of Theorem 1 (n=[70, 50, 30]⊤).

ni∈Z+> 1 of feature vectors. Assuming that each block is
concentrated around a similarity constant wi∈R+, i=1, ..., k
with negligibly small variations, the smallest eigenvalue
associated with the ith block is equal to zero, i.e. λ(i)

0 =0 and
the remaining ni− 1 number of eigenvalues are λ

(i)
1,...,ni−1=

ni

ni−1 where the eigenvalues are in ascending order for the ith
block such that λ(i)

0 ≤ λ1 ≤ ... ≤ λ
(i)
ni−1.

Proof. See Appendix A.
A synthetic graph model with a k = 3 block

zero-diagonal affinity matrix and corresponding vector of
eigenvalues is shown in Fig. 1. By definition, each block is
assumed to be concentrated around a constant wi∈R+, e.g.
w=[0.9, 0.6, 0.3]⊤. Fig. 1b confirms the results of Theorem 1
that for each block i=1, ..., 3 the smallest eigenvalue is zero
and the remaining ni − 1 eigenvalues are ni

ni−1 .
From Theorem 1, it becomes clear that the eigenvalues

contain the block size information. This valuable knowledge
shall be later used to learn the structure of W based on the
eigenvalues. In the following, a further analysis is performed
by defining the vector v=[v1, v2, ..., vn]⊤∈Rn, such that
vi=

∑n
j=i li,j , i=1, ..., n where li,j is the i, jth element of L.

Corollary 1.1. The vector v associated with the Laplacian
matrix L ∈ Rn×n, is a piece-wise linear function, i.e.

vj = f(j) =

(j − ℓ1)w1

...

if ℓ1 ≤ j ≤ u1

(j − ℓk)wk if ℓk ≤ j ≤ uk

where ℓ1=1, u1=n1, ℓi=
i−1∑
l=1

nl+1 and ui=
i∑

l=1

nl for i=2, ...,k.

Proof. See Appendix B.
An illustration of Corollary 1.1 is provided in Fig. 2 for an

example consisting of k = 3 blocks. The changepoints of v
define the blocks sizes and the coefficients around which the
blocks are concentrated. Consequently, v provides substantial
information about the eigenvalues of L, which shall be used
to design eigenvalue-based affinity matrix estimation methods
that may be computed efficiently through the optimization in
a vector space (see Sec. III).
B. Problem Formulation

Given a dataset of feature vectors X ∈ Rm×n and the
number of blocks k, the goal of this work is to efficiently
estimate a k block zero-diagonal symmetric affinity matrix
W∈Rn×n using the eigenvalue information from Theorem 1
and Corollary 1.1.

0
ℓ1 = 1 u1

n1

ℓ2 u2

n2

ℓ3 u3 = n
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Fig. 2: Examplary plot of L and v for k = 3 blocks.

III. PROPOSED METHOD

A. The Optimization Problem

This section proposes a method to represent the data matrix
X as a weighted graph G by finding a k block zero-diagonal
affinity matrix W whose non-zero components in the ith
row/column denote the neighbors of the ith node. In principle,
if there exists a k block zero-diagonal affinity matrix W as
in Theorem 1, the eigenvalues associated with the Laplacian
matrix L will be in the following form

λo=sort

(
0, ..., 0︸ ︷︷ ︸

k

,
n1

n1 − 1
, ...,

n1

n1 − 1︸ ︷︷ ︸
n1−1

, ...,
nk

nk − 1
, ...,

nk

nk − 1︸ ︷︷ ︸
nk−1

)
, (2)

where sort(.) denotes sorting operation in ascending order.
According to Eq. (2), the estimation of W can be cast as the
following eigenvalue-based optimization program

λ̂ = λ(p̂) =argmin
pi∈p

∥λ(pi) − λ(pi)
o ∥22. (3)

Here, λ̂ is the estimated vector of eigenvalues which is a
function of the estimated number of neighbors (i.e., λ̂=λ(p̂)).
The estimate is the minimizer of Eq. (1), where pi is the
ith candidate of neighbors from a given vector of candidates
p=[p1, p2, ..., pNp ]∈ZNp . The associated affinity, overall edge
weight and Laplacian matrices of dimension Rn×n are
denoted, respectively, by W(pi), D(pi) and L(pi). Finally,
λ
(pi)
o ∈Rn is the target vector of eigenvalues associated with

L(pi) whose estimation is detailed in the following section.

B. Estimation of the Target Eigenvalue Vector λ
(pi)
o

1) Initialization : Possible Block Sizes
Suppose that v(pi)∈Rn denotes the vector v associated

with W(pi). Further, let N
(pi)
c ∈ Z+ denote the number of

changepoints and let τ (pi)=[τ
(pi)
1 , τ

(pi)
2 , ..., τ (pi)

Nc
]⊤∈Z+ be

the vector containing corresponding locations in v(pi) where
τ
(pi)
0 = 0 and τ

(pi)
Nc+1=n. Then, the changepoints in v(pi) are

detected by minimizing the following penalized least-squares
function [18]

N
(pi)
c +1∑
r=1

τ
(pi)
r∑

s=τ
(pi)

r−1+1

(v(pi)
s − v̂(pi)

s )2 + βN (pi)
c , (4)

where β is a penalty parameter, v
(pi)
s and v̂

(pi)
s are the sth

point in the rth linear piece of v(pi) and the corresponding
least-squares linear fit v̂(pi), respectively. If the decrease in
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residual error is smaller than β, Eq. (4) rejects including
additional changepoints while all possible changepoints are
considered for β = 0. For a defined maximum number of
changepoints Ncmax

∈Z+, which is a reasonably small number
satisfying k − 1 ≤ Ncmax

, β is increased gradually as long as
the function finds fewer number of changepoints than Ncmax

.
Accordingly, a matrix N

(pi)
cand = [n

(pi)
1 ,n

(pi)
2 , ...,n(pi)

ξ ]⊤∈Rξ×k

whose rows denote the candidate size vectors is designed by
combination of all possible size vectors with ξ =

(
Nc

k−1

)
. In

practice, the candidate size vectors consisting the block sizes
that are smaller than a defined minimum number of nodes in
the blocks nmin can be removed from N

(pi)
cand.

2) Plane-based Piece-wise Linear Fit v(pi)

Suppose that nl denotes the size of the lth piece from a
candidate vector of sizes n

(pi)
cand=[n

(pi)
1 , n

(pi)
2 , ..., n(pi)

k ]⊤∈Rk,
cand = 1, ..., ξ. Let S

(pi)
l = [s

(pi)
l1

, s
(pi)
l2

, ...,s(pi)
lnl

]⊤∈ Rnl×2

denote a sample matrix associated with the lth linear piece
such that s

(pi)
lj

= [j, v
(pi)
lj

]⊤∈R2, j = 1, ..., nl. Then, the goal
of this step is to approximate v(pi) using a piece-wise linear
function that is determined by estimating k planes, i.e.

P̂(pi)
l ={s(pi)

lj
|s(pi)

lj
∈R2, (ϑ̂

(pi)
l )⊤s

(pi)
lj

+b̂
(pi)
l =0}, l=1,...,k, (5)

where ϑ̂
(pi)
l ∈R2 and b̂

(pi)
l ∈R denote, respectively, the normal

vector and the bias associated with the estimated lth plane
P̂(pi)
l . The estimation can be performed by solving the k

individual ordinary eigenvalue problems as in [19]

Σ
(pi)
l ϑ̂

(pi)
l = Λ

(pi)
l ϑ̂

(pi)
l l = 1, ..., k (6)

and

b̂
(pi)
l = −(ϑ̂

(pi)
l )⊤µ

(pi)
l l = 1, ..., k, (7)

where Λ
(pi)
l ∈ R is the smallest eigenvalue associated with the

lth plane, and Σ
(pi)
l ∈ R2×2 and µ

(pi)
l ∈ R2 are, respectively,

the covariance matrix and the mean vector of S
(pi)
l .3 Then,

using the estimated parameters of the k planes, each piece in
the vector v(pi) is estimated as follows

(ϑ̂
(pi)
l )⊤

[
j

v̂
(pi)
lj

]
+ b̂

(pi)
l =0, l=1, ..., k, j=1, ..., n(pi)

l , (8)

where v̂
(pi)
lj

denotes the jth estimated point in the lth piece.

Assuming that for each n
(pi)
cand ∈ N

(pi)
cand, cand = 1, ..., ξ there

exists a piece-wise linear function, the size vector is optimized
as follows:

n̂ = argmin
n

(pi)

cand=n
(pi)
1 ,...,n(pi)

ξ

∥v(pi) − v̂
(pi)
cand∥22, (9)

where n̂ denotes the estimated block size vector and
v̂
(pi)
cand∈Rn is the estimate of vector v(pi) associated with

n
(pi)
cand. The proposed EBDR method is summarized for the

p-nearest neighbor graphs in Algorithm 1.

3The optimal solution to the plane-based piece-wise linear fit problem
can be uniquely determined by k covariance matrices and means of the
corresponding k clusters (k blocks for our case) when the objective function
reaches the optimum. For a detailed information, see Corollary 1-2 in [19].

Algorithm 1: p-nearest Neighbor Graph Construction

Input: X ∈ Rm×n, p ∈ RNp , Ncmax
, nmin(optional)

for pi = p1, p2, . . . , pNp
do

Eigenvalue vector λ(pi)

Compute W(pi) ∈ Rn×n s.t. wi,j = x⊤
i xj

Compute λ(pi) ∈ Rn using Eq. (1)
Target Eigenvalue Vector Estimation λ

(pi)
o

Initialization: Possible block sizes
Compute N

(pi)
cand ∈ Rξ×k using Eq. (4)

Plane-based Piece-wise Linear Fit
for n

(pi)
cand = n

(pi)
1 , ...,n(pi)

ξ do
for l = 1, ..., k do

Calculate Σ(pi)∈R2×2 and µ(pi)∈R2 for S(pi)
l

Find ϑ̂
(pi)
l ∈R2 and b̂

(pi)
l ∈R via Eq. (6)-(7)

Substitute ϑ̂
(pi)
l ,b̂(pi)

l in Eq. (8) to find v̂
(pi)
l ∈Rn

(pi)

l

end
Form v̂

(pi)
cand=[(v̂

(pi)
1 )⊤, (v̂

(pi)
2 )⊤, ..., (v̂(pi)

k )⊤]⊤∈Rn

end
Estimate the block size vector n using Eq. (9)
Design λ

(pi)
o using Eq. (2)

end
Compute λ̂ = λp̂ using Eq. (3) and obtain W(p̂)

Output: G(p̂) = {V,E(p̂),W(p̂)}

Dataset k n n p⋆ p̂

Fisheriris [21] 3 150 [50, 50, 50]⊤ 50 50
Gait [22, 23] 5 800 [160, 160, 160, 160, 160]⊤ 160 165
O. Cancer [24] 2 216 [95, 121]⊤ 100 110
Person Id. [25] 4 187 [38, 40, 47, 62]⊤ 45 45

TABLE I:Numerical results for real-world datasets (Ncmax
=8).

IV. EXPERIMENTAL RESULTS

In this section, EBDR is benchmarked against three state-of-
the art block diagonal representation approaches, i.e. BDSSC
[8], BDR-B [9] and IBDLR [10], and a low rank representation
method RKLRR [20] that can be reduced to the block diagonal
for independent subspaces and the initial matrix containing
all neighbors Wn−1. The performance of different methods
is analyzed in terms of their average clustering accuracy
p̄acc and computation time t using the following real-world
datasets: Fisher’s iris (Fisheriris) [21], radar-based human
gait (Gait) [22, 23], ovarian cancer (O. Cancer) [24] and
person identification (Person Id.) [25]. The parameters of the
competitors are manually tuned to the best possible p̄acc by
using 500 samples in total. Then, t is summarized for 100
Monte Carlo experiments using the selected parameters. In
all experiments, the initial affinity matrix Wn−1 is computed
using cosine similarity and spectral clustering is performed as
partitioning method. EBDR is computed using the following
parameters: nmin=

n
2k , p=[5, 10,...,n−1], Ncmax

∈[k91,...,20].
In Tab. I, the EBDR application to p-nearest neighbor graphs

is benchmarked using real-world datasets. The number of
neighbors that provided the best p̄acc is denoted by p⋆. As
can be seen, p̂ provided similar results to p⋆ in all cases. To
analyze the effect of Ncmax

on p̄acc and t, the estimated nearest
neighbor values and computation time are shown for different
Ncmax values in Fig. 3a and Fig. 3b, respectively. The results

1763



0 2 4 6 8 10 12 14 16 18 20

25

50

75

100

125

150

175

200

225

250
Fisheriris

Gait

O. Cancer

Person Id.

(a) p̂ for increasing Ncmax

0 2 4 6 8 10 12 14 16 18 20

1

10

100

Fisheriris

Gait

O. Cancer

Person Id.

(b) t for increasing Ncmax

Fig. 3: Numerical results for the parameter Ncmax
.

Dataset Wn−1 BDSSC BDR9B RKLRR IBDLR EBDR

Fisheriris [21] 78.00 96.00 97.33 94.67 94.67 98.00
Gait [22, 23] 79.63 83.13 86.25 86.75 82.75 80.75
O. Cancer [24] 75.00 81.48 86.57 89.35 77.31 79.17
Person Id. [25] x 95.72 97.33 95.72 95.72 97.33

TABLE II: p̄acc(%) for real-world datasets. ‘x’ denotes the
results that produce complex-valued eigenvectors, Ncmax=8.
The numbers indicate the best p̄acc for the competitors.

Dataset BDSSC BDR9B RKLRR IBDLR EBDR(p̂)EBDR

Fisheriris [21] 0.174 0.041 0.208 0.573 0.015 0.295
Gait [22, 23] 6.132 4.748 5.394 826.2 0.495 43.29
O. Cancer [24] 2.590 0.099 3.471 1.397 0.041 1.018
Person Id. [25] 0.235 0.489 0.013 0.564 0.019 0.550

TABLE III: t(seconds) for real-world datasets. Except for
EBDR the level of sparsity assumed to be known and it is
defined as p̂ for EBDR(p̂). Ncmax=8 in all cases.

show that EBDR approximates p⋆ values even for a small
number of samples. However, large values of Ncmax

result
in high computational cost, especially in outlier contaminated
datasets, e.g. Gait. Lastly, comparisons are drawn in terms of
p̄acc and t for the different methods in Tab. II and Tab. III,
respectively.

The clustering accuracy p̄acc that has been detailed in Tab. II
shows the best possible performances for the competitors
when the level of sparsity (i.e. the penalty parameter) has
been optimally selected. In particular, the competitor clustering
accuracy results are the best results according to an oracle
selected penalty parameter/s from a grid, while estimating the
level of sparsity is part of the optimization for the proposed
method. Therefore, Tab. II shows that EBDR improves the
performance of Wn−1 and performs similar to the best
results of the competitors including an unsupervised sparsity
parameter estimation p. In terms of t, the proposed method
shows a significantly better performance when the level
of sparsity is assumed to be known for the competitors.
Even when including the nearest neighbor number estimation,
EBDR is competitive in terms of speed, which can be further
reduced by tuning p, Ncmax and nkmin .

V. CONCLUSION AND FUTURE WORK

The eigenvalues associated with the block affinity matrix
are analyzed for the generalized eigen-decomposition to
demonstrate the importance of eigenvalues in block affinity
matrix design. Based on our theoretical findings on the
eigenvalues and the vector v, we proposed EBDR which

estimates the number of neighbors by approximating the target
eigenvalues. EBDR was benchmarked on different real-world
datasets and it showed promising performance compared to
four optimally tuned popular approaches in terms of both
computation time and the accuracy.

Additional experiments that had to be left out due to space
limitations also indicated that the findings in Theorem 1
and Corollary 1.1 may be used to design other fast and
unsupervised block diagonal representation methods (e.g.,
elastic net). Future work will therefore adapt the proposed
theory to develop new methods.

APPENDIX A: PROOF OF THEOREM 1

Let W ∈ Rn×n be a zero-diagonal k block affinity matrix
with corresponding Laplacian L ∈ Rn×n, i.e.

W=


0 w1 ... w1 ...
w1 0 ... w1 ...

... ... ... ...

w1w1 ... 0
...
0 wk ...wk...wk 0 ...wk

... ... ... ......wkwk ... 0

L=


d1 9w1... 9w1...
9w1 d1 ... 9w1...

... ... ... ...

9w1 9w1... d1

...
dk 9wk... 9wk

... 9wk dk ... 9wk

... ... ... ...

... 9wk 9wk... dk


where di=(ni−1)wi, i=1, ..., k and L=D−W. To compute
the eigenvalues in Eq. (1), det(L− λD) = 0 is considered
which can equivalently be written using the determinant
properties of block matrices [26], as follows

det(L−λD) = det(L1−λ(1)D1) ...det(Lk−λ(k)Dk) = 0,

where Li∈Rni×ni , Di∈Rni×ni and λ(i), i=1, ..., k, denote
L, D and λ associated with the ith block, respectively. Further,
Li−λ(i)Di, i=1, ..., k can alternatively be written as[ ci −wi...−wi
−wi ci ...−wi

... ... ...
−wi−wi... ci

]
︸ ︷︷ ︸

Li−λ(i)Di

=

[
ci+wi 0 ... 0

0 ci+wi... 0

... ... ...
0 0 ...ci+wi

]
︸ ︷︷ ︸

H

+

√wi√
wi

...√
wi


︸︷︷︸
u

[
−√

wi−
√
wi···−

√
wi

]︸ ︷︷ ︸
v⊤

with ci = (ni − 1)wi − λ(i)(ni − 1)wi. For an invertible
matrix H ∈ Rni×ni such that H† = (ci + wi)

−1I, the
matrix determinant lemma [27] computes the determinant as
det(H+ uv⊤) = (1 + v⊤H†u)det(H) where u ∈ Rni and
v∈Rni are two column vectors. Thus, it holds that

det(Li−λ(i)Di)=

(
1+(−√

wi1)
⊤
( √

wi

ci+wi
1
))(

ci+wi

)ni

where 1∈Zni denotes a column vector of ones. Substituting
1⊤1 = ni in det(Li−λ(i)Di)=0 leads to(

1−
niwi

niwi − λ(i)(ni − 1)wi

)(
niwi − λ(i)(ni − 1)wi

)ni= 0(
−λ(i)(ni − 1)wi

niwi − λ(i)(ni − 1)wi

)(
niwi − λ(i)(ni − 1)wi

)ni = 0(
− λ(i)(ni − 1)wi

)(
niwi − λ(i)(ni − 1)wi

)ni−1
= 0

For wi > 0 and ni > 1, the eigenvalues are given by

λ
(i)
0 = 0 and λ

(i)
1,...,ni−1 =

ni

ni − 1
, i = 1, ..., k.
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APPENDIX B: PROOF OF COROLLARY 1
By definition, the vector v is computed by summing up the

rows of the upper triangular part of L, i.e.
v = [0, w1, . . . , d1, 0, w2, . . . , d2, . . . , 0, wk, . . . , dk],

where di=(ni − 1)wi, i=1, ..., k. Since each block includes
ni ∈ {n1, n2, ..., nk} number of nodes the vectors containing
lower and upper limits can be defined as follows

ℓ=

[
1, n1 + 1, . . .,

k−1∑
i=1

ni + 1

]
u=

[
n1, n1 + n2, . . .,

k∑
i=1

ni

]
.

Substituting each j in the function f(j) yields the vector:
v = [0, w1, . . ., (n1 − 1)w1, 0, . . ., . . ., 0, wk, . . ., (nk − 1)wk],

which concludes the proof that two vectors are identical.
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