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Abstract—Efficient sampling of graph signals is essential to
graph signal processing. Recently, blue-noise was introduced
as a sampling method that maximizes the separation between
sampling nodes leading to high-frequency dominance patterns,
and thus, to high-quality patterns. Despite the simple inter-
pretation of the method, blue-noise sampling is restricted to
approximately regular graphs. This study presents an extension
of blue-noise sampling that allows the application of the method
to irregular graphs. Before sampling with a blue-noise algorithm,
the approach regularizes the weights of the edges such that the
graph represents a regular structure. Then, the resulting pattern
adapts the node’s distribution to the local density of the nodes.
This work also uses an approach that minimizes the strength
of the high-frequency components to recover approximately
bandlimited signals. The experimental results show that the
proposed methods have superior performance compared to the
state-of-the-art techniques.

Index Terms—Graph signal reconstruction, blue-noise, graph
signal sampling, graph signal processing.

I. INTRODUCTION

The sampling and reconstruction of graph signals have at-
tracted the attention of the scientific community [1]; the earlier
work on these tasks focused on strictly bandlimited signals and
used the least-squares errors minimization reconstruction [1].
To generate high-quality sampling patterns, the sampling
methods often rely upon expensive eigendecomposition. While
methods that avoid eigendecomposition have been proposed,
they still present different drawbacks such as high complexity,
the need for parameter tuning and the limitations of strictly
bandlimited signals models. Recently, the work in [2] used
the graph Laplacian regularization to recover approximately
bandlimited signals, which are a better representation of real
world signals where a high-frequency component may arise.
The authors in [2] minimize the worst-case error and avoid
eigendecomposition using a clever approach based on the
Gershgorin Disc theorem.

Blue-noise (BN) sampling of graph signals was introduced
in [3] as an intuitive method applied entirely in the vertex
domain. The algorithm is based on the concepts of spatial
dithering, and it generates patterns by promoting separation be-
tween sampling nodes; this characteristic leads to patterns with
high-frequency dominance, thus the name blue-noise, since the
color blue is associated with the higher frequencies. Since, in
irregular graphs, the uniform BN patterns fail to represent the
graph distribution, the benefits of BN are restricted to highly
regular graphs. This work extends BN sampling to signals on

irregular graphs using regularization of the weight of the edges
such that the graph defined by these new edges presents an
approximately regular structure. In the mapped graph, a blue-
noise sampling algorithm generates a uniform pattern such
that the distribution of sampling nodes represents that of the
original graphs.

Under the assumption that smooth signals present low-
frequency dominance, given the sampled signal, this work uses
a reconstruction method that aims to minimize the presence of
high-frequency components on the recovered signals, relying
on the optimization problem solved in [4]. The method allows
the recovery of approximately bandlimited signals without
using eigendecomposition and avoids the estimation of the
signal’s bandwidths.

This paper is organized as follows. In Section II the notation
and blue-noise sampling are introduced. Section III presents
the regularization of the weights for the sampling of irregular
graphs and the greedy algorithm to select the regularization
parameter. Section IV defines the reconstruction approach.
Section V presents a set of experiments comparing the pro-
posed methods against existing techniques, and Section VI
presents a set of conclusions

II. GRAPH SIGNAL SAMPLING AND RECONSTRUCTION

A graph G(V (G), E(G)) consists of a set of nodes V (G)
and a set of edges E(G). The strength of the connection
between nodes is contained in the weight matrix, W, where
W(u, v) > 0 if the node u is adjacent to v (u ∼ v). The
nodes adjacent to a node v is denoted by N (v) = {u ∈
V (G)| W(u, v) > 0} also known as the neighborhood of v.
A graph signal is a function that maps the nodes’ information
to the real numbers, x : V (G) → RN , and it is represented
by a vector x ∈ RN , whose entry x(v) represents the value
of the signal on the node v.

The combinatorial Laplacian, L, of a graph is given by
L = D − W, where D is the diagonal degree matrix
whose entries are D(v, v) =

∑
u∈V (G) W(u, v); and the

normalized Laplacian is given by L = D−1/2LD−1/2. The
graph Lapacian is often used as a variation operator as it allows
to capture the smoothness of a signal by measuring how it
varies according to the underlying structure of the graph [5].
Then, the variation of a signal x at a node v is computed
in terms of the combinatorial Laplacian by ∥ (Lx)v ∥2=
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[∑
u∈N (v) W(v, u)|x(v)−x(u)|2

] 1
2

[5]. Smooth signals are
expected to have low values of ∥ (Lx)v ∥2, on every node [5].

The eigendecomposition of the Laplacian, L = UΛU⊤, is
often used as the Graph Fourier Transforms (GFT) [5], such
that the eigenvectors U = [u1,u2, ...,uN ] represent a Fourier-
like basis and the eigenvalues 0 = µ1 ≤ µ2 ≤ ... ≤ µN

correspond to the frequencies, where N = |V (G)| is the
number of nodes in G. Then, the GFT of the graph signal
x is given by x̂ = U⊤x, and the bandwidth, ω, of the signal
x is defined by the non-zero components of x̂ [5]. A signal is
said to be k-bandlimited if it satisfies x = Ukx̂k, where x̂k

are the first k elements of x̂ and Uk the first k vectors in U.

A. Graph Signal Sampling

The problem of obtaining a unique and stable reconstruc-
tion given the signal on a subset of observed nodes, S =
{s1, s2, ...sm} with m < N is known as reconstruction
problem. The sampled signal is defined as x(S) = Mx, where
M = [δs1 , δs2 , ..., δsm ]⊤ is a sampling operator and δsi is a
Kronecker column vector centered at si. There are different
approaches to recover signals from its values on S [2], [6],
[7]. Strictly bandlimited signals ca be recovered by solving
the least squares errors minimization:

x = argmin
z∈span(Uk)

∥ Mz − x(S) ∥2= Uk(MUk)
†x(S), (1)

where Uk contains the first k eigenvectors of the GFT such
that µk ≤ ω and (MUk)

† ∈ Rk×m is the Moore-Penrose
pseudo-inverse of MUk [6], [8]. Note that for m ≤ k, the
system is underdetermined and there are no guarantees of a
unique reconstruction [8]. There exist two sampling schemes
that minimize recovery errors: random and deterministic. Ran-
dom sampling methods select the sampling nodes according
to a probability distribution [8]. On the other hand, determin-
istic methods minimize an objective function by adding one
node at a time optimizing some objective function on each
iteration [1]. Naturally, for k-bandlimited sampling consist on
the optimal row selection of Uk.

Smooth signals that are approximately bandlimited can be
recovered by solving the Laplacian regularization:

xrec = argmin
z

∥ Mz − x(S) ∥2 +ϕ(z⊤Lqz)

= (M⊤M+ ϕL)−1M⊤x(S), (2)

where ϕ is a parameter that balances the data’s fidelity
and the signal’s smoothness. The work on [2] proposes a
sampling approach that minimizes the worst-case error of the
reconstruction that avoids eigendecomposition by using the
Gershgorin Disc theorem.

This paper recovers a signal by minimizing the variation of
them within a certain neighborhood od the nodes, and uses
a sampling method based on the spatial characteristics of the
graph to minimize recovery errors.

Fig. 1. Spatial and spectral characteristics of blue-noise sampling patterns
with density d = 0.15 on a sensor graph with 1000 nodes: (left) a blue-noise
sampling pattern on the graph, (right) the average power spectrum of 100
blue-noise sampling patterns.

B. Blue-Noise Sampling

In order to introduce blue-noise, first the notion of distance
on a graph needs to be defined. The distance between two
nodes Γ(ua, ub) is defined as the path with minimum length
between them, where a path is a sequence of edges that joins
a sequence of nodes (ua, u1, ..., un, ub).

Blue-noise was originally introduced as a dithering tech-
nique [9]–[11], in graphs, blue-noise sampling distributes the
sampling nodes as homogeneously as possible, such that the
selected nodes are separated by a minimum distance of λb,
known as the principal path-length of the pattern. Naturally, the
value of λb is inversely proportional to the number of samples.
Blue-noise patterns are also characterized by a high-frequency
dominance on their power spectrum. Figure 1 (right) shows
the graph power spectrum of 100 ideal blue-noise sampling
patterns on a Sensor Network graph with N = 1000. In this
plot, the high-frequency components are substantially larger
than low-frequency components; this phenomenon is due to
the maximization of the minimum separation between samples
which results in patterns that look like the one depicted in
Fig. 1 (left).

In color theory, the red color is associated with lower
frequencies, hence, the redness of a pattern measures the
strength of the lower frequency components of the pattern:

Rs =
1

∥ ŝ ∥22

N∑
ℓ=2

ŝ2(ℓ)

µℓ
=

1

m

N∑
ℓ=2

ŝ2(ℓ)

µℓ
, (3)

where s denotes the binary signal that represents the sampling
set, with s = 1 if v ∈ S and s = 0 otherwise, and ŝ is
the Graph Fourier Transform of s. Note that good blue-noise
patterns should minimize Rs.

The redness of a pattern is connected to the spatial
characteristics of the graph in [3], using the concepts of
graphs partitions and the isoperimetric dimension. For a
graph G = (V (G), E(G)), a partition is a division of
the nodes in the graph V (G) into |P| subsets, P =
{V (Ω1), V (Ω2), ..., V (Ω|P|)} and Ωj is the subgraph induced
by the nodes on V (Ωj). The isoperimetric dimension, δ,
measures how similar is the graph G to a grid-like graph [3].

The work in [3] considers that a pattern is generated from a
partition P by locating only one sampling node v per partition
element, such that all the neighbors of the sample exist on
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the same partition. It was also shown that the redness of
the sampling pattern is connected to the characteristics of the
partition from which it is generated by:

Rs ≤ (µ2 + µN )2(1− |P|/N)2

4µ2µN min
j

{
Cδj

vol(Ωj)
2/δj

} , (4)

where vol(Ωj) =
∑

u∈Ωj
D(u, u), δj is the isoperimetric

dimension of the induced subgraph Ωj , and Cδj is a constant
that depends only on δj . The work in [3] proved that patterns
that minimize the redness maximize the quality of the patterns.

It was shown in [3] that on graphs satisfying δ1 = δ2 =
... = δ|P| = δG, partitions with equal volume, vol(Ωi) =
vol(Ωj) ∀i, j, minimize the redness of the pattern and
thus have high quality. For graphs with non-regular degree
distributions, the isoperimetric dimension can vary from one
partition to another. In this case, the patterns generated by
an equal partition of an irregular graph do not minimize the
right-hand side of (4).

III. DENSITY AWARE BLUE-NOISE SAMPLING

To define irregular graphs, it is necessary to introduce the
notion of density. The density of a single node is computed
as:

ρ(v) =
D(v, v)

|V (G)|
. (5)

Formally, Chung [12] defines approximately regular graphs as
a graph where all but n vertices have the same degree. While
there are different characterizations of irregular graphs, here a
graph is considered to be irregular if the standard deviation,
σ, of the nodes’ density, ρ(v), satisfies σ ≥ 0.1ρ, where ρ is
the density of G.

This work seeks to generate a good quality sampling pattern
on irregular graphs using blue-noise sampling. To do so, the
sampling approach proposed on [3] is applied to a modified
version of the graph that is approximately regular, where the
isoperimetric dimension varies less between partitions. The
modified graph is denoted Gar, and it consists of the same set
of nodes V (Gar) = V (G) and edges E(Gar) = E(G) but
the weights of the edges are modified according to:

War(u, v) = W(u, v)max {ρ(u),ρ(v)}α , (6)

where ρ(i) is the density of the node i and α is a variable
that controls the uniformity of Gar. The weight of the edges is
amplified or reduced depending on the nodes’ density and the
value of α. In general, (6) increases the distance between the
nodes in denser parts of the graph by modifying the weight of
the edges. The edge’s weight is multiplied by the maximum
of the density of the nodes it connects to ensure that denser
nodes are spread in the resulting graph Gar. The regularization
parameter, α, controls how sparse the regions become.

Ideally, for blue-noise sampling, the value of α should be
selected such that it maps G into an approximately regular
graph Gar. Therefore, α should minimize the standard devi-
ation of the density vector of the graph, such that it tends
to be regular; this is equivalent to minimizing the standard

deviation of Dar(u, u). Then, the optimal value of α solves
the next optimization problem:

minimize
α

σ(Dar1)

s.t. Dar(v, v) =
∑
u∼v

W(u, v)max{ρ(u),ρ(v)}α,

(7)
where σ(·) denotes the standard deviation, 1 a column vector
of ones with N rows, Dar(v, v) denotes the degree of node
v in the mapped graph, W(u, v) is the weight of the edge
u ∼ v, α is the density regularization parameter, and ρ(v) is
the nodes’ density given by (5).

A. Regularized Void and Cluster

Since the objective function in (7) is a non-convex function
of α, which is defined by the sum of weighted exponentials,
the problem is not convex, this work uses a greedy approach
based on the method proposed in [13] to find the value of α.
For simplicity, this work denotes fα = σ(Dar). To find a suit-
able value of α, the proposed approach starts with α = 0 and
modifies its value by adding to it a small constant δg (step size)
until the next condition holds, fα−δg − fα ≥ 2(fα − fα+δg ).
The first value of α for which this condition is satisfied
represents the value of α for which the function fα stops
dropping sharply or starts to increase. The algorithm proceeds
as follows: first, it computes the standard deviation of the
nodes’ degree on the original graph (f0). Then, sequentially
the algorithm computes War using (6) for αr = αr−1 + δg .
For each value of αr, the algorithm verifies the condition. If
this condition holds, War = Wαr

and αg = αr, otherwise
the algorithm continues its greedy search. We define the
generalized Void and Cluster (GVAC) as the algorithm where
the Void and Cluster (VAC) sampling algorithm [3] is applied
to the graph Gar with weight matrix War. Void and Cluster is
an iterative algorithm that generates an initial random pattern
and repeatedly removes nodes from the tighter cluster and
places them into the loosest void [3].

IV. RECOVERY OF APPROXIMATELY SMOOTH SIGNALS

The spectrum of smooth signals on graphs is characterized
by a low-frequency dominance. Therefore, the reconstruction
model should aim to maximize these components and attenuate
higher frequency components. To this end, we introduce the
concept of blueness of a graph signal which captures the
strength of the high-frequency components:

Bx =

N∑
i=1

µq
i x̂

2
i , (8)

where µi is the ith eigenvalue of the shift operator, x̂ is the
Fourier Transform of the signal, and q is a factor that penalizes
high-frequency components. Intuitively, for higher values of q,
the high-frequencies will have a larger impact on the value of
Bx than for smaller values of q. Then if the reconstruction
approach seeks to minimize Bx, the reconstructed signal x
will contain fewer frequency components as the value of
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q increases. When q = 1, Bx =
N∑
i=1

µix̂
2
i = x̂⊤Λx̂ =

(U⊤x)⊤Λ(U⊤x) = x⊤Lx. The general form of blueness
for q ≥ 1, is Bx = x⊤Lqx. Then, the recovery of a graphs
signal using Blueness Minimization can be formulated as the
next optimization problem:

xrec = argmin
z

z⊤Lqz

s.t. Mz = x(S).
(9)

Note that while the objective in (9) is a convex problem, its
closed-form requires the inversion of Lq , which does not exist
since Lq is a singular matrix. A perturbation Ψ = ϵI with
ϵ ∈ R+ can be added to Lq such that the resulting matrix
is invertible and meaningful. Using Lq +Ψ instead of Lq in
the problem in (9), the problem becomes the Sobolev norm
minimization with close form [4]:

xrec = (Lq +Ψ)−1M⊤(M(Lq +Ψ)−1M⊤)−1x(S). (10)

Equation 10 is denoted as Blueness Minimization Reconstruc-
tion (BMR) and it offers two principal benefits. First, a cutoff
frequency or bandwidth of the signal is not required. Secondly,
since the method assumes signal smoothness it can recover
approximately bandlimited signals.

V. EXPERIMENTS

In the experiments, the performance of GVAC and the
BMR is evaluated and compared to the state-of-the-art tech-
niques in artificial signals using two artificial graphs as well
as a real traffic network:

• G1: Small World Network graph with N = 1000, with
rewiring probability p = 0.8 and average degree d = 80.

• G2: The Minnesota traffic graph with N = 2, 642 [14].
The artificial signals were generated according to the next
models:

• SM1: the signals are noisy bandlimited. The signals were
generated at random with a bandwidth of k = 0.05N ,
where the GFT coefficients are drawn from the Gaussian
distribution N (1, 0.52). The sampled signal is contami-
nated with additive Gaussian noise such that the signal-
to-noise ratio is SNR = 20dB.

• SM2: the true signals are approximately bandlimited.
The GFT coefficients are drawn from the Gaussian dis-
tribution N (1, 0.52). Then the signal is passed through
a Butterworth filter H of order n = 8 for G1 and
n = 1 for G2, and ωc = µk with k = 0.05N such

that H(µi) =

(
1 +

(
µi

µk

)2n
)−1

.

The sampling methods proposed by Chen et al. [15] (E-
optimal), Anis et al. [6] (SP), Sakiyama et al. [7] (ED-Free),
Bai et al. [2] (BS-GDA), Parada et al. (VAC) [3] and Ran-
dom sampling were compared against the proposed method,
Generalized Void and Cluster (GVAC). For the approximately
bandlimited signals (SM2), the filter’s cut frequency ω = ωc

was defined as the bandwidth of the signal for methods that
required this parameter.

For each graph, 100 signals were generated using both
signal models. Then, the signals were sampled using the
different sampling approaches. Next, each signal was recon-
structed using the following reconstruction methods: least-
squares (LS) [6], GLR [2], the Splines method on [16] and
BMR method in (10). For the BMR method, ϵ varied from
1×10−4 to 1×103, and the best result is reported for each sam-
pling method. For Splines, the regularization parameter varied
between 1×10−2 and 500, the best result is reported [16]. For
SP [6], ED-Free [7] and BS-GDA [2] the parameter selections
was done as suggested by the authors.

Figure 2 presents the average MSE of the 100 signals
in terms of the size of the sampling set using BMR for
the signals’ recovery, it is clear that the performance of the
proposed sampling method (GVAC) is comparable or better to
deterministic approaches [6], [7], [15]. Note that the uniform
patterns generated by VAC [3] perform similarly to random,
proving the need for density regularization.

The comparison between different reconstruction methods
is shown in Fig. 3. For the LS [6] the results using SP [6]
sampling are reported. For the GLR [2] the results using BS-
GDA [2] are reported. Finally, for Splines, and BMR the
results using GVAC and the graphs’ respective α value are
reported. For the signal model SM1, since the signals are
strictly bandlimited, the LS reconstruction [6] performs con-
sistently better than other methods. For BMR, as q increases,
the performance becomes closer to LS. For approximately
bandlimited signals SM2, the proposed reconstruction method
with q = 8 show the best overall performance as well.

Figure 4 shows the spatial representation of one repetition of
the first experiment using BMR on a signal generated using
SM2 on G4. The top row of Fig. 4 illustrates the absolute
error between the reconstructed signal and the original signal.
Finally, the bottom row of Fig. 4 presents the sampling
patterns with density d = 0.08 used to obtain the signals’
reconstruction. Note that the uniform pattern generated using
VAC [3] fails to represent the tight cluster on the graph,
resulting in higher reconstruction errors.

VI. CONCLUSIONS

This paper generalizes blue-noise sampling to irregular
graphs. The proposed method first maps the graph into an
approximately regular graph by regularizing the edges’ weight.
Then, a blue-noise algorithm (VAC) is used to sample the
mapped graph. The experimental results showed that the pro-
posed sampling approach achieves lower reconstruction errors
on irregular graphs, than the original blue-noise sampling
proposed in [3] and its performance is comparable to those that
focus on the spectral characteristics of the graph, confirming
the need to include the distribution of the nodes in the
sampling process.

Based on the assumption that the signals of interest are
smooth, this work introduced a reconstruction approach that
minimizes the high-frequency components of the reconstructed
signal’s spectrum, named Blueness Minimization. The experi-
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Fig. 2. Average MSE vs. sample size of 100 different artificial signals using
the BMR method in (10) with q = 1 and different sampling schemes. The
top row shows the results for SM1 in (a) Graph G1 and (b) Graph G2. The
bottom row shows the results for SM2 in (e) Graph G1 and (f) Graph G2.
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Fig. 3. Average MSE vs. sample size of 100 different artificial signals using
different reconstruction schemes. The top row shows the results for SM1 in
(a) Graph G1 and (b) Graph G2. The bottom row shows the results for SM2
in (e) Graph G1, (f) Graph G2.

mental results show that this approach recovers approximately
bandlimited signals more efficiently.
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