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Abstract—This paper presents an efficient robust method to
learn sparse graphs from contaminated data. Specifically, the
convex-analytic approach using the minimax concave penalty
is formulated using the so-called γ-lasso which exploits the γ-
cross entropy. We devise a weighting technique which designs
the data weights based on the ℓ1 distance in addition to the
Mahalanobis distance for avoiding possible failures of outlier
rejection due to the combinatorial graph Laplacian structure.
Numerical examples show that the proposed method significantly
outperforms γ-lasso and tlasso as well as the existing non-robust
graph learning methods in contaminated situations.

Index Terms—graph learning, minimax concave penalty, robust
statistics, γ-cross entropy

I. INTRODUCTION

Graph learning aims to infer potential relationships among
data, and it has many applications in a variety of fields
such as financial analysis [1], molecular biology [2], and
network anomaly detection [3]. The Gaussian graphical model
approaches [4]–[8] assume that data emerge from a multi-
variate Gaussian distribution and that the edge weights are
designed based on partial correlation coefficients. A popular
example is the graphical lasso [4], which imposes positive
definiteness as well as sparseness on the matrix representing
the graph, where the ℓ1 norm is used for sparsification. The
Gaussian graphical model approaches are highly versatile be-
cause they are based on strong statistical foundations without
any physical constraints on the graph. Unfortunately, however,
the use of the ℓ1 norm tends to yield estimation biases,
causing significant degradation of interpretability. Alternative
approaches using nonconvex penalties such as the minimax
concave (MC) penalty have been proposed to alleviate this
issue while maintaining the benefit of variance reduction
[9]–[12]. Among those approaches, the one proposed in [9],
[10] uses the classical Moreau’s decomposition as well as the
Tikhonov regularization to convexify the overall cost function.
Simultaneous use of such a nonconvex regularization and the
Tikhonov regularization successfully enhances interpretability,
as well as sparseness, of graphs with convergence guarantee.
This approach employs the primal-dual (PD) splitting method,
and we thus refer to it as PD-MC henceforth.

While such methods tend to yield interpretable graphs in
many situations, its performance may degrade significantly
when the data are contaminated by outliers. Robust graph
learning methods based on graphical lasso have been studied
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independently [13]–[16]. For instance, tlasso [15] exploits the
heavy-tailness of the t-distribution to suppress the deteriora-
tion of estimation accuracy caused by outliers. Unfortunately,
this method does not perform well when the outliers are
concentrated on one side of the real axis [16]. This limitation
has been overcome by γ-lasso which is based on the γ-
cross entropy to remove outliers while taking into account the
structure of the graphical model. Its interpretability, however,
is limited due again to the use of the ℓ1 norm. Now, our
primitive idea is the following: a robust method to learn
highly interpretable graphs will be attained by blending the
advantages of γ-lasso and PD-MC.

In this paper, we present an efficient robust graph learning
method extending γ-lasso based on the idea of PD-MC. In
the original γ-lasso framework, a weight to each data vector
is computed based on the Mahalanobis distance from the
estimated mean. Specifically, outlier is distant from the mean
by its nature, and this vanishes its weight. As a result, the
impacts of outliers to the estimates of the mean and the
covariance matrix (which are involved in the PD-MC formu-
lation) become negligible, and hence the estimate becomes
robust against outliers. However, due to the combinatorial
graph Laplacian (CGL) structure on which PD-MC is based,
outlier rejection by γ-lasso may fail when outliers have
certain structures. To solve this issue, we devise a weighting
technique which designs the weights based not only on the
Mahalanobis distance but also on the ℓ1 distance. We show
the robustness of the proposed γ-PD-MC method based on the
approximate Pythagorean relation. Numerical examples show
the remarkable advantages of the proposed method over γ-
lasso and tlasso for several types of graph.

II. PRELIMINARIES

This section presents the notation and mathematical tools
used in the present work.

A. Notation

The sets of real numbers and nonnegative real numbers
are denoted by R and R+, respectively. The transpose of
vector/matrix is denoted by (·)T. Given a vector x :=
[x1, x2, · · · , xn]T ∈ Rn, we define the ℓ1 and the ℓ2 norms by
∥x∥1 :=

∑n
i=1 |xi| and ∥x∥2 :=

(∑n
i=1 x

2
i

) 1
2 , respectively. Let

I , 0, and 1 denote the identity matrix, the vector of zeros, and
the vector of ones, respectively. Let J := 1

n11
T ∈ Rn×n. Let

diag(x) denote the diagonal matrix with its diagonal entries
given by the components of a vector x.

1776ISBN: 978-1-6654-6798-8 EUSIPCO 2022



We consider undirected weighted graphs with nonnegative
edge weights. The graph G = (V, E ,W ) is composed of a
set of nodes V , edges E , and a weight matrix W ∈ Rn×n,
where n = |V| is the number of nodes. Here, W is symmetric
with wii = 0 by convention, and hence it is characterized
completely by its upper triangular part of which the vectorized

version is denoted by w ∈ C := R
n(n−1)

2
+ . The combinatorial

graph Laplacian (CGL) is a function of w defined by L(w) :=
diag(W1) −W ∈ Rn×n. Here, L : C → Rn×n is a linear
operator with its adjoint operator denoted by L∗. It is clear
that L(w)1 = 0, and the zero eigenvalue is simple when the
graph is connected.

B. Mathematical tools

The projection of w onto the nonnegative cone C(:=
R

n(n−1)
2

+ ) is denoted by PC(w) := argmin
y∈C

∥w−y∥2. The soft

thresholding operator softλ : C → C for λ > 0 is defined by
softλ(w) := PC(w − λ1) for any nonnegative vector w ∈ C.
The MC penalty [17] of index η > 0 is defined by

ΦMC
η (w) := ∥w∥1 − min

y∈Rn

(
∥y∥1 +

1

2η
∥w − y∥22

)
, (1)

which is a weakly convex function. The MC penalty ΦMC
η (w)

induces a sparse estimate as well as alleviating underestimation
compared to the ℓ1 penalty, because it becomes constant above
the threshold η.

C. γ-cross entropy

Let f(x), x ∈ Rn, be the underlying probability density
function of signals, and δ(x) be the density of outliers. Given
a contamination ratio ε ∈ (0, 1), the density of contaminated
data is given by

g(x) = (1− ε)f(x) + εδ(x). (2)

Given a γ > 0, the γ-cross entropy between the g and an
estimate f̂ of f is defined as follows [18]:

dγ(g, f̂)=−
1

γ
log

∫
g(x)f̂ γ(x)dx+

1

1 + γ
log

∫
f̂ 1+γ(x)dx.

Minimizing dγ(g, f̂) w.r.t. f̂ leads to robust estimation of the
density f in the presence of outliers (see Section III-B).

D. PD-MC algorithm

The PD-MC algorithm [10] further improves the learning
accuracy of the combinatorial graph Laplacian by using the
MC penalty in the regularization term of the CGL estimation
method [19]. It also has the features of efficient learning and
guaranteed convergence under certain conditions at the same
time by representing CGL in the form of L(w).

PD-MC is given in Algorithm 1. It requires O(n3) com-
plexity, which is the same as the other graph learning methods
based on graphical models. For more details, see [10].

III. ROBUST GRAPH LEARNING

In this section, we present the proposed graph learning
method and its properties.

Algorithm 1 PD-MC

Input: Initial estimate (w0,V0), tolerance ϵPD > 0, proximity
parameters τ > 0, σ > 0, covariance matrix S, regulariza-
tion parameters λ1 ≥ 0, λ2 ≥ 0, MC parameter η > 0,
relaxation parameters ρk > 0. (Set k := 0)
while ∥wk+1 −wk∥22 > ϵ∥wk∥22 (k ̸= 0) do

1. Compute w̃k+1 = PC [wk−τL∗(Vk)−τ(λ11+L∗(S))
−τ(η−1λ1soft1(wk)− η−1λ1wk + λ2wk)]

2. Find the eigenvalues νi and the matrix U = [u1 . . .un]
containing all the corresponding (unit-norm) eigenvectors
of
(
J + σ−1Vk + L (2w̃k+1 −wk)

)
3. Compute Ṽk+1 = Vk + σL (2w̃k+1 −wk) + σJ

−σ
[
Udiag

(
ν1+
√

ν2
1+4σ−1

2 ,· · ·,νn+
√

ν2
n+4σ−1

2

)
UT

]
4. (wk+1,Vk+1)=ρk

(
w̃k+1, Ṽk+1

)
+(1−ρk)(wk,Vk)

5. k ← k + 1
end while
return graph Laplacian L(wk)

A. Proposed γ-PD-MC Method

Suppose that m measurement vectors x1, x2, · · · , xm ∈
Rn are available for learning. Using the empirical γ-cross
entropy, the negative γ-likelihood function under the CGL
structure is given by (cf. [16])

d̃γ(θ) :=−
1

γ
log

(
1

m

m∑
i=1

f̂ γ
θ (xi)

)
+

1

1+γ
log

∫
f̂ 1+γ
θ (x)dx,

where θ := (µ,w) ∈ Rn × C, and f̂θ(x) =
(2π)−n/2|L(w)|1/2 exp

[
−(x− µ)TL(w)(x− µ)/2

]
is the

density of the multivariate normal distribution. Here, |L(w)|
is the pseudo determinant (i.e., the product of the nonzero
eigenvalues) of the singular matrix L(w) [19]. It actually holds
that |L(w)| = det(L(w) + J), because the eigenvalue of
L(w) + J corresponding to the eigenvector 1

n1 is one.
We cast the graph learning task as the problem of finding

θ̂ ∈ argmin
θ∈Rn×C

(
d̃γ(θ) + λ1Φ

MC
η (w) +

λ2
2
∥w∥22

)
, (3)

where λ1, λ2 > 0 are the regularization parameters. Here, the
two regularizers are introduced in the work of PD-MC [9], [10]
to enhance sparsity and graph interpretability simultaneously
with guarantee of global optimality. The proposed method is
given in Algorithm 2, based on the algorithm in [16] derived
from the majorization-minimization (MM) algorithm. Step 4 of
the algorithm is based on the following minimization problem:

min
w∈R

n(n−1)
2

− logdet(L(w)+J) + λ′1Φ
MC
η (w) +

λ′2
2
∥w∥22

+ ιC(w) + ⟨(1 + γ)Sz(t)(µ(t+1)), L(w)⟩, (4)
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Algorithm 2 γ-PD-MC

Input: Contaminated data vectors x1, x2, · · · , xm ∈ Rn, ro-
bustness parameter γ, balancing parameter κ, initial estimate
(w0,V0), whole loop tolerance ϵ > 0, PD-MC tolerance
ϵPD > 0, proximity parameters τ > 0, σ > 0, regularization
parameters λ1 ≥ 0, λ2 ≥ 0, MC parameter η > 0, relaxation
parameters ρk > 0. (Set t := 0)
while ∥w(t+1) −w(t)∥22 > ϵ∥w(t)∥22 (t ̸= 0) do

1. Update data weight z(t)i by (5)
2. µ(t+1) :=

∑m
i=1 z

(t)
i xi

3. Sz(t)(µ(t+1)) :=
∑m

i=1z
(t)
i

(
xi−µ(t+1)

)(
xi−µ(t+1)

)T
4. Update w(t+1) by minimizing (4) using Algorithm 1
5. t← t+ 1

end while
return graph Laplacian L(w(t))

where λ′1 = 2(1 + γ)λ1, λ′2 = 2(1 + γ)λ2, and the indicator

function ιC(w) :=

{
0, if w ∈ C,
+∞, otherwise,

enforces w to be

nonnegative. The weights are given by

z
(t)
i :=

exp
[
−
(
κψ1(xi;µ

(t))+ γ
2ψ2(xi;µ

(t),w(t))
)]

m∑
j=1

exp
[
−
(
κψ1(xj ;µ(t))+ γ

2ψ2(xj ;µ(t),w(t))
)] , (5)

where κ ≥ 0 controls the balance between
ψ1(xi;µ

(t)) := ∥xi − µ(t)∥1 and ψ2(xi;µ
(t)) :=(

xi−µ(t)
)T
L(w(t))

(
xi−µ(t)

)
. The weight z

(t)
i given

to the data xi vanishes when xi is an outlier vector (i.e.,
when it is distant from the mean vector µ(t+1)), thereby
removing outliers.

Remark 1. Letting κ := 0 in (5) produces the weights
given in the original work [16], which gives a majorizer
used in the MM algorithm. For κ ̸= 0, although the weight
z
(t)
i certainly gives a majorant, it does not actually give a

proper majorizer in the sense of [16, eq. (5)], which means
that the monotone decreasing property of the MM algorithm
is not guaranteed theoretically. Nevertheless, it works well
empirically as shown in Section IV. The reason for introducing
ψ1 in addition to ψ2 is related to the CGL structure. More
specifically, if xi − µ(t) = r1 for some r ∈ R, it follows
that

(
xi − µ(t)

)T
L(w(t))

(
xi − µ(t)

)
= 0 for any r due to

L(w(t))1 = 0 coming from the CGL structure. Suppose that
there exists an outlier xi such that xi − µ(t) = r1 for some
huge r. The weight for such an outlier does not vanish, and
thus outlier rejection fails in this case. This may cause a
serious performance degradation, and some important links
may fail to be detected for instance. The additional function ψ1

avoids such situation because it grows linearly as r increases,
vanishing the weights to reject the corresponding outliers.

B. Pythagorean relation in graph learning methods

A great advantage of using the γ-divergence [18]

Dγ(g, f̂θ) := dγ(g, f̂θ)− dγ(g, g) (6)

is that the true distribution can be estimated even when the
contamination ratio ε is large [18]. This property relies on the
following assumption on the relation between the density δ(x)
of outliers and the underlying density f(x) of signals:

νf :=

(∫
δ(x)fγ(x)dx

)1/γ

≈ 0, (7)

which means that δ(x) mostly lies on the tail of f(x).
In [16, Remark 2], the Pythagorean relation [18] holds true

for γ-lasso in the absence of the sparsity promoting regularizer.
It can be easily seen that a similar relationship holds for
arbitrary values of the regularization parameter as well by
transformimg the Pythagorean relation. Assuming (7) for the
estimated distribution f̂θ(x), the approximate Pythagorean
relation holds [18]:

Dγ(g, f̂θ) = Dγ(f, f̂θ) +Dγ(g, f) +O (νγ) (8)

where ν := max{νf , νf̂θ} with the νf̂θ defined in the
same way as in (7), and O(·) is Landau’s symbol. Note
here that Dγ(g, f) + O (ενγ) is constant in f̂θ. By (8), it
holds that d̃γ(θ) ≈ dγ(g, f̂θ) = dγ(f, f̂θ) + const., which
implies that minimizing the cost in (3) leads to minimiz-
ing Dγ(f, f̂θ) + λ1Φ

MC
η (w) + λ2

2 ∥w∥
2
2 approximately (since

dγ(g, g) is constant in f̂θ). Note here that an empirical estimate
of the divergence Dγ(f, f̂θ) from f̂θ to the density f of
“clean signals” is hardly available since the data available are
assumed to be contaminated. The argument given in this part
explains the remarkable robustness of γ-PD-MC, as shown in
Section IV.

IV. NUMERICAL EXAMPLES

We conduct simulations to examine the performances of the
proposed γ-PD-MC method, γ-lasso [16], and tlasso [15]. For
the sake of reference, the non-robust methods (PD-MC [10],
graphical lasso [4], and CGL [19]) are also tested.

A. Simulation settings

Dataset generation: We consider two types of graph: (i)
grid graph G(

√
n,

√
n)

grid , and (ii) Erdös-Rényi graph G(n,0,1)ER . The
graph weights w⋆ are randomly drawn from the uniform distri-
bution over the interval [0.1, 3.0], regarded as the ground-truth
graph Laplacian L(w⋆) in this simulation. From each graph
generated, normal data are generated from N (0, L(w⋆)

†),
where (·)† denotes the Moore-Penrose pseudoinverse, and
the covariance matrix S is computed from normal data. In
addition, 10% of the measurement vectors x1, x2, · · · , xm are
contaminated additively by outlier vectors of size n following
the normal distribution N (α1, I) for α = 5. For each type of
graph, we randomly generate 15 graphs with n = 100 nodes
using the toolbox given in [20].
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Performance measure: The relative error (RE) and F-score
(FS) are used as performance measures: RE (ŵ,w⋆) :=
∥L(ŵ)− L(w⋆)∥2F / ∥L(w⋆)∥2F, where ∥ · ∥F is the Frobe-
nius norm, and FS (ŵ,w⋆) := 2tp/(2tp + fn + fp), where
tp, fp, and fn stand for true-positive, false-positive, and false-
negative, respectively. Here, the relative error indicates the dis-
crepancy between the ground-truth graph Laplacian L(w⋆) ∈
Rn×n and its estimate L(ŵ) ∈ Rn×n, while the F-score is a
measure of accuracy for binary classification (taking values in
[0,1]), indicating whether the sparse structures are extracted
correctly.
Parameters: For each algorithm, the best parameters are
chosen manually. Because the performances in the RE and FS
measures are related to each other in the present simulation
settings, the parameters are tuned to obtain the smallest relative
errors on average. For the proposed method, λ2 := 0 gave
the best performance together with λ1 := 5.0 × 10−3 and
γ := 0.01 for grid graph, and with λ1 := 1.0 × 10−2 and
γ := 0.05 for Erdös-Rényi graph.

B. Results and discussions

Figures 1 and 2 show the performances for different values
of m/n. The γ-PD-MC significantly outperforms the other
methods in both measures for all m/n values.* Specifically,
the gains compared to γ-lasso and tlasso in F-score are ap-
proximately up to 0.58 and 0.42, respectively. The remarkable
gains come from (i) the use of the weakly convex regularizer
instead of the ℓ1 regularizer and (ii) the exploitation of the
CGL structure. The F-scores of γ-lasso are considerably low
for small m/n, because the regularization parameter for the
ℓ1 norm cannot be sufficiently large to obtain sparse graphs
for avoiding large errors.

Figure 3 shows the performances across different contami-
nation ratios for Erdös-Rényi graph. The simulation setup and
the parameters are the same as in Fig. 2. It is shown that the
learning accuracy of the robust methods keeps more or less
constant, while that of the non-robust methods deteriorates
as the contamination ratio increases. The proposed method
achieves remarkably better performances than the existing
methods even for large contamination ratios. This is due to
the same reasons (i) and (ii) raised in the previous paragraph.
The performance of tlasso for small outlier ratios is poor, as
it assumes heavy tailed distributions despite the existence of
no (few) outliers in that case.

V. CONCLUDING REMARKS

We proposed a robust method to learn sparse and inter-
pretable graphs based both on the γ-lasso framework and PD-
MC. We also showed efficient weight-design given to each
datum in estimating graphs with the CGL structure. The ro-
bustness of the proposed γ-PD-MC method was shown based
on the approximate Pythagorean relation. Numerical examples
showed that the proposed method achieved remarkably better

*The absence of CGL plots for small m/n is due to numerical errors
occurring in solving the quadratic programming.
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Fig. 1: Performance across m/n for grid graph G(10,10)grid.
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Fig. 2: Performance across m/n for Erdös-Rényi graph
G(100, 0.1)
ER.

performance than γ-lasso and tlasso both in relative error and
F-score for grid graph and Erdös-Rényi graphs.

In the present study, it was mostly assumed that all (or most)
components of some data vectors xi are contaminated. There
is also a situation when the data is contaminated in a “cell-
wise” manner, meaning that only small portions of many data
vectors xi are contaminated. In such a case, possible issues
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Fig. 3: Performance across the outlier ratio at m/n = 100 for
Erdös-Rényi graph G(100, 0.1)

ER.

may happen because too many data vectors could be removed
[21]. There remains a room for further studies on this point.
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