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Abstract—In this paper we introduce a novel approach for
accurate self-localization and pose tracking for Lidar and GPS-
equipped autonomous vehicles (AVs) in high-density (more than
5000 points/m2) 3D localization maps obtained through Mobile
Laser Scanning (MLS). Our solution consist of two main steps:
First, starting from a poor GPS-based initial position, we estimate
the 3DoF pose (planar position and yaw orientation) of the ego
vehicle by aligning its sparse (50-500 points/m2) Lidar point cloud
measurements to the MLS prior map, using a novel approach
of matching static landmark objects of the scene. Second, to
effectively deal with the lack of pairable objects in certain time
frames (e.g. due to scene segments occluded by a large moving
tram), we track the estimated 3DoF pose of the AVs by a Kalman
filter. Comperative test are provided on roads with heavy traffic
in downtown city areas with large (5-10 meters) GPS positioning
errors. The proposed approach is able to reduce the location
error of the vehicle by one order of magnitude and keep the
yaw angle error around 1° during its whole trajectory without
considerable drift, while running in real-time (20-25 Hz).

Index Terms—lidar, localization, pose estimation, tracking

I. INTRODUCTION

Autonomous vehicles (AVs) would be impossible without
sensors as they demand accurate and real-time information
about their surroundings, in order to safely navigate with only
minor or without any human intervention. In this context,
precise and robust localization and pose tracking of the ego
vehicle is a key challenge. Although the Global Positioning
System (GPS) based position information is usually suitable
for helping human drivers, its accuracy is limited in inner-city
areas with the presence of several large buildings, making it
unfeasible for AVs. Instead, the accurate 3DoF pose (planar
position and yaw orientation) of the moving vehicle can be
calculated by aligning the onboard measurements (OBM) of
the vehicles’ visual or range sensors to available 3D city maps
[1]. On the other hand, the onboard perception is often effected
by temporal occlusions and motion artifacts, which demands
robust and accurate tracking of the moving vehicle.

In this paper, we propose a joint solution for estimating and
tracking the pose of a moving vehicle in a reference 3D city
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Fig. 1. Aim of the paper: Tracking the trajectory of a moving vehicle (dis-
played with blue) by positioning the corresponding RMB Lidar measurements
to a global MLS map.

map. As OBM data, we utilize sparse (50-500 points/m2) point
clouds captured by Rotating Multi-beam (RMB) Lidar sensors,
which measure directly the range information, and efficiently
perform under different illumination and weather conditions,
offering accurate point cloud streams with a large field of view
in real-time (5-20 Hz). Beyond the RMB Lidar sensor, we
also assume that the vehicle carries a GPS receiver, however,
we expect that in various city regions the GPS measurements
might be inaccurate due to lack of high quality navigation
signals [2], [3], providing position errors up to several (5-
10) meters. As reference map, we utilize 3D measurements
of recent mobile laser scanning (MLS) platforms equipped
with time synchronized Lidar sensors and navigation units,
as they provide dense (more than 5000 points/m2), accurate
and feature rich point clouds precisely registered to a geo-
referenced global coordinate system [4]. The addressed sce-
nario is displayed in Fig. 1.

In our work, we only rely on the vehicles’ onboard RMB
Lidar and inaccurate GPS position measurements, and we do
not use any Inertial Measurement Units (IMUs). We propose
two significant contributions to improve the state-of-the-art:

1) Fast and accurate pose estimation by matching static
objects of the sparse RMB data frames to the prior MLS
map, starting from a poor GPS-based position estimation
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(5-10 meters error)
2) Efficient and robust tracking of the vehicle movement by

fusing the estimated poses in a constant velocity model-
based position-only-measured (POM) Kalman filter

II. RELATED WORK

Robot or vehicle localization given a prior map is a hot topic
in the literature [5]. In general, we can distinguish methods
addressing global localization or pose estimation (when no
prior pose is available), and pose tracking, when the vehicle
starts from a known pose which is updated over time.

In the field of pose tracking, the majority of existing meth-
ods uses visual odometry information [6] by incrementally
aligning consecutive Lidar point cloud measurements mostly
using a variant of the Iterative Closest Point (ICP) [7] algo-
rithm, and determining the relative pose of the moving vehicle
at each iteration. Some methods integrate visual odometry
with IMU sensors for more accurate results [8], [9]. As these
methods integrate small incremental motions over time, they
are bound to drift-effect in large-scale scenarios, which is
typically reduced by loop closure detection.

Tackling the problem of global localization in large-scale
urban environment with poor GPS coverage, the pose estima-
tion problem can be described as a point cloud registration
between the OBM and map data, starting from a poor initial
alignment [10]. Among the point-level registration methods,
the ICP-based methods need sufficient initial alignment, which
can not be performed in poor GPS-covered areas. Plenty
of methods apply keypoint based data matches [10], [11],
however, these approaches are sensitive to the characteristics
of the alignable point clouds. [12] solves ICP-based data
mapping at a higher level, by explicitly matching segments
across point cloud frames. This method proved to be efficient
for matching consecutive RMB Lidar point clouds, however
the computational time remained a few seconds per point cloud
pair, which significantly increases using dense MLS data.
Instead of using raw point clouds, [2] integrates a range-image
based observation model into a Monte Carlo localization
framework to estimate the 3DoF pose of a vehicle.

The closest solution to our approach is the SegMap [13]
technique, which detects wall segments of the corresponding
OBM and map regions, and describes these regions using
geometric or data-driven features. On the other hand, similar
features are hard to extract for segments captured with differ-
ent sensor modalities, while the lack of close wall segments
(i.e in large square regions, or due to occlusions) can mislead
this method as well. Following a different approach, we aim to
match pillar-like objects (poles, traffic lights, signs, etc.) of the
scenes in real-time, which sorts of objects are typically present
in urban regions. In addition, we also introduce an efficient
pose tracking method to tackle with featureless measurement
frames (e.g. due to temporal occlusions by moving objects).

III. THE PROPOSED METHOD

We propose a real-time, robust pose estimation and tracking
technique for AVs using sparse RMB Lidar and low accuracy

GPS measurements, with respect to prior high density localiza-
tion maps obtained from MLS point clouds. As a preliminary
step, we efficiently extract and describe the static objects of the
MLS data by their geometric and semantic properties. Next,
for estimating the optimal pose of the vehicle, we apply an
object-based matching transform between the pillar-like ob-
jects detected from the RMB Lidar data and the extracted static
objects of the MLS map. Here we adopt a generalized Hough
transform based algorithm, applied first for fingerprint minutia
matching [14], which is able to find a robust transformation
between two point sets even if the size of the point clouds are
significantly different. Finally, from the optimal transformation
– assuming planar movements – we extract the 3DoF pose of
the vehicle (x,y,θ), which parameters we track by a constant
velocity model-based position-only-measured (POM) Kalman
filter, effectively compensating temporal occlusions.

A. Extraction of static objects from the MLS prior map

The raw, noisy and dense MLS point clouds may include
several measurement segments which do not contain relevant
information for vehicle navigation (e.g. many ground points,
regions of large building facades, re-located or dynamic ob-
jects). First, to reduce the map’s size and redundancy, we
semantically segment the raw MLS point clouds and keep
only regions of static object classes (pillar-like, street furni-
ture, vegetation and facade), whose appearance do not vary
significantly over time, and should be also present in empty
street segments. Note that this step can be performed in an
offline pre-processing stage, either in manual or in automatic
manner [15]. Next, we extract object samples from these static
class regions by 3D Euclidean clustering [16] and we describe
each static landmark object with the following parameters:

• Global coordinates (x,y,z) of the object’s 3D bounding
box corner points (24 parameters)

• Yaw orientation of the object (1 parameter)
• Label of the object class (1 parameter)
• Size of the object’s 3D bounding box: width, depth,

height and volume (4 parameters)

C1(x1,y1,z1)

C2(x2,y2,z2)

C4(x4,y4,z4)

C3(x3,y3,z3)

C5(x5,y5,z5)

C6(x6,y6,z6)

C8(x8,y8,z8)

C7(x7,y7,z7)

Fig. 2. Extracted corner points of a pillar-like object sample from the MLS
map.
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With this feature extraction, we reduce the number of points
describing an MLS object from a few tens of thousands to
30 parameters (see Fig. 2), enabling quick access to the map
objects.

B. Pose estimation of the moving vehicle

Next, we estimate the global pose of the vehicle in the MLS
map by matching its perceived OBM data to the reference
model. As a key idea, instead of aligning the original point
clouds, we separate pillar-like objects and wall segments in
the RMB Lidar frames (see Fig. 3) by a grid-based fast
scene segmentation technique [17], and we aim to match the
detected pillars of each frame to the previously extracted static
landmarks from the MLS map. Here, as a key challenge, we
should expect many falsely detected object candidates in the
automatically segmented RMB Lidar frames [18] (e.g. traffic
participants, partially occluded objects), which may result in a
possibly large ratio (up to 80%) of outlier matches. To handle
their effect, we turned to the voting schema of the generalized
Hough transform, motivated by complex assignment problems
such as fingerprint minutiae matching [14].

First, we use the available, usually notably inaccurate GPS
signal for initially positioning the actual RMB point cloud
frame’s center in the global coordinate system of the MLS
map. Assuming that the local ground height information is
available from the map, we search for an optimized rigid
transformation with a 2D translation and a rotation component
between the point clouds. The translation component (∆x,∆y)
compensates for the originally unknown position error of the
GPS sensor, while – based on experiments – the rotation
component can be approximated by the yaw rotation angle
(∆θ). In summary, we model the optimal transform as follows:

T∆x,∆y,∆θ

(
x
y

)
=

[
cos∆θ − sin∆θ
sin∆θ cos∆θ

](
x
y

)
+

[
∆x
∆y

]

Fig. 3. A sample RMB Lidar frame. Detected pillar-like objects [17] are
displayed with red, while wall segments are showed by orange.

Next, we find the optimal parameters of this T∆x,∆y,∆θ

transformation via extracted keypoint pairs. First, we collect
the extracted pillar-like RMB Lidar and MLS map objects into
two sets denoted by ORMB and OMLS. Then, we describe
each RMB object candidate by the same 8 keypoints (i.e.
bounding box corners) as previously with the map landmarks,
and adopt the generalized 3D Hough transform to determine
the optimal transformation between the RMB and MLS-based
keypoint sets, by a voting algorithm.

First, for limiting the parameter space, we allow maximum
offsets of ±60◦ for the yaw rotation (∆θ) and ±12 meters
for planar translation (∆x and ∆y) to tackle with the GPS
inaccuracies. As required by the Hough schema, we discretize
the transformation space between the minimal and maximal
allowed values of each parameter, using 0.4 meters for the
translation components and 0.5◦ degrees for rotation. This
setup enables both reasonably accurate resolution and quick
computation. Next, we allocate a three-dimensional array
A[∆x,∆y, θ] with zero initial values to summarize the votes
of the possible parameter triplets.

During the voting process, we search for possible key-
point correspondences between all pillar-like object pairs
(oRMB, oMLS) ∈ ORMB×OMLS. For a given keypoint couple
kRMB, kMLS we add a vote for all possible T∆x,∆y,∆θ

transforms, which map kRMB to kMLS. More specifically, we
iterate over all the discrete ∆θ values, and for each ∆θ′

we rotate ki3D by ∆θ′ first, and calculate the corresponding
translation vector [∆x′,∆y′]T as follows:

[
∆x′

∆y′

]
= kMLS −

[
cos∆θ′ − sin∆θ′

sin∆θ′ cos∆θ′

]
ki3D

Next, we vote for the calculated T∆x′,∆y′,θ′ transform so
that we increase the A[∆x′,∆y′, θ′] element of the accumula-
tor array by one. After iterating through the whole parameter
space, the optimal T∆x∗,∆y∗,θ∗ transform can be extracted as
follows:

(∆x∗,∆y∗,∆θ∗) = argmax
∆x,∆y,∆θ

A[∆x,∆y,∆θ]

Finally, we make an acceptance decision of calculated
transform based on a minimum number of votes:

A(T) = true if and only if A[∆x∗,∆y∗,∆θ∗] > t

We experimentally set t = 5. In case of an accepted transform,
the estimated pose of the vehicle can be calculated as follows:

x∗ = xGPS +∆x∗ (1)
y∗ = yGPS +∆y∗ (2)
θ∗ = θGPS +∆θ∗ (3)

C. Pose tracking

Although we experienced that the above pose estimation
method works robustly even in sparse scenes, covering only a
few (5-10, depending on the scene characteristics) pillar-like
objects, its accuracy is limited in scenarios without a sufficient
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number of matchable landmark object pairs. To overcome this
problem, we track the estimated pose parameters by a constant
velocity (CV) model based Kalman filter [19], whose true state
vector is defined as follows:

xt =
(
xt yt θt vxt vyt wθt

)T
,

where xt, yt and θt are the planar position and yaw orientation
and vxt, vyt and wθt are the velocities of the vehicles,
respectively. As the CV model assumes permanent velocity
within a short observation period, the model’s dynamics can
be considered as follows:

xtk = Φxtk−1 +wk,

where xtk denotes the true state at time kT , T is the sampling
interval determined by the applied RMB Lidar sensor’s spin
rate (T ≈ 66.67 ms used), wk is the process noise, and Φ is
the transition matrix from kT to (k + 1)T , which is defined
as:

Φ =


1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Next, we integrate the Lidar-perceived planar position and yaw
orientation values (Sec. III-B) into this model dynamics, so
that after each accepted transformation (A(T) = true), we
use the estimated poses (x∗,y∗,θ∗) defined by eq. (1)-(3) as
new measurements as follows:

zk = Hxtk + vk,

where zk = (x∗, y∗, θ∗) denotes the measurement vector, H
denotes the measurement matrix, and vk is the measurement
noise. As our model is position-only-measured, H is:

H =
(
1 1 1 0 0 0

)
Finally, we sequentially predict and estimate the state vec-

tors based on the previous state values and measurements via
the Kalman filter equations:

x̃k = Φx̂k−1 (4)
x̂k = x̃k +Kk(zk −Hx̃k) (5)

where x̃k and x̂k are the predicted, respectively estimated state
vectors by the Kalman filter, while Kk denotes the Kalman
gain that minimizes the errors in the estimated positions and
velocities. If the Lidar-based estimation of the pose transfor-
mation is not accepted (i.e. A(T) = false in Sec. III-B), we
only execute the prediction step (eq. (4)), while the state vector
re-estimation (eq. (5)) is skipped.

IV. EVALUATION

We evaluated the proposed pose tracking technique on chal-
lenging scenarios from inner-city areas on real measurement
sequences, in a pathway of around 0.6 km. The RMB Lidar
data was collected by a Velodyne HDL-64E sensor with 15

TABLE I
QUANTITATIVE SUMMARY OF THE POSE PARAMETER ERRORS

Method
Error metric

dx [m] dy [m] D [m] dθ [°]

Raw GPS 3.4214 3.2428 4.9288 29.768
GPS-only Kalman filter 1.5184 0.7691 1.8004 2.1962
Frame-wise pose estimation 0.5852 0.5628 0.9029 1.6131
Proposed method 0.4850 0.4349 0.7304 1.0592

Hz spin rate, while the MLS reference map was generated
using multiple road measurements of a Riegl VMX-450 laser
scanner. During quantitative evaluation, we compared the
results of the proposed model to available Ground Truth (GT)
information, generated through manually aligning the RMB
Lidar frames to the global MLS point clouds. As evaluation
metrics, we calculated the mean absolute error (MAE) for
each estimated pose parameter: position errors along the x-axis
(dx) and y-axis (dy), and the yaw orientation error (dθ). For
two-dimensional position error, we also calculated the average
Euclidean distance (D) between the estimated and GT planar
positions (x,y) of the vehicle. For comparative experiments,
we developed a baseline, only GPS-based Kalman filter and
also implemented a Lidar-based frame-wise pose estimation
method [10] without tracking, besides the proposed method.
The overall numerical results are summarized in Table I.

Fig. 4 displays a sequence of error rates calculated for 180
consecutive time frames from a test scenario, covering a driven
path of approximately 300 meters. During this drive, frames
containing large moving objects (tram, bus) with significant
occlusions were recorded, while the trajectory of the ego
vehicle was turning to left of around 20 degrees. In the
pose estimation step, 20% of the calculated transforms were

0 20 40 60 80 100 120 140 160 180

Frame number

0

1

2

3

4
Position error ([m])

Frame-wise estimation

GPS-based Kalman filter

Proposed pose tracking

0 20 40 60 80 100 120 140 160 180

Frame number

0

5

10
Yaw angle error ([°])

Frame-wise estimation

GPS-based Kalman filter

Proposed pose tracking

Fig. 4. Position (D) and orientation (dθ) error of the tracked poses versus
Ground Truth information, demonstrating the superiority of the proposed
method.
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Fig. 5. Estimated trajectories of the different methods and the Ground Truth
path.

dropped due to the lack of enough pairable objects. The planar
trajectories estimated by the different methods can be also
visually compared in Fig. 5. For the sake of demonstrating
the proposed method’s accuracy, a video is available at the
following link1.

From the results of Table I and Fig. 4, we can conclude
that using the frame-wise Lidar-based pose estimation we
can significantly improve the accuracy of the GPS-only po-
sitioning, reducing the average location error from around
5 meter to 1 meter. However, the value of the error is still
strongly fluctuating frame-by-frame without considering the
vehicle dynamics (see Fig. 4). The proposed joint method
can largely overcome this artifact by efficiently integrating the
Lidar-perceived pose information into the Kalman filter based
dynamic model of the moving vehicle, achieving an average
global position error of around 70 centimeters and orientation
error around 1° in approximately only 40-50 milliseconds.

Regarding the computation time of the whole workflow, the
proposed method is fully able to operate in real-time, as it
runs with 20-25 Hz on a desktop computer. The presented
result may also serve as a fast and accurate initial alignment
for an ICP-based [7] point level registration algorithm (which
can also run in real time with parallel implementation), that
may decrease the location error to a few centimeters.

V. CONCLUSION

We proposed a robust, real-time method for estimating and
tracking the 3DoF pose of a moving vehicle based on its

1Demonstration video: https://youtu.be/-7GijZzXMIA

Lidar and inaccurate GPS measurements against a prior MLS
map. In our work, we efficiently integrated the Lidar-based
pose information into a Kalman filter based dynamic vehicle
model, and qualitatively and quantitatively demonstrated the
proposed methods accuracy and usability in a large-scale urban
scenario. In the future, we aim to extend the dynamic model
and integrate visual odometry information [6] by incrementally
registering the captured Lidar frames.
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[17] A. Börcs, B. Nagy, and Cs. Benedek, “Instant object detection in lidar
point clouds,” IEEE Geoscience and Remote Sensing Letters, vol. 14,
no. 7, pp. 992–996, 2017.
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