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Abstract—In this paper, we demonstrate how an artificial neural
network (ANN) of low complexity can be used on radar data
in the remote sensing field to estimate geographical information
from oil-spills scenes. The work aims at the extraction of two
features that are important for an effective contingency plan:
the thickness of thick oil slicks, and their relative dielectric
constant physical parameter. The adopted system model assumes
reflectivities measured by wide-band radar sensors operating in C-
and X- frequency bands and mounted on nadir-looking systems
such as drones. It extracts the thickness of oil slicks being in the
1−10 millimeter range and the dimensionless relative dielectric
constant (permittivity) of the heavy oil material in the 2.8−3.3
range. We test the accuracy of the ANN model using simulated and
in-lab experimental data. Finally, we validate the low complexity
of our approach by providing FPGA implementation results of
the inference. To the best of our knowledge, ANNs in combination
with the active radar sensor have not been used for oil-spills
parameters’ estimation so far.

Index Terms—oil spill, radar reflectivity, artificial neural
network, estimation, slicks’ thickness, relative permittivity.

I. INTRODUCTION

Environmental damage to marine life due to oil spills might
last for years. After locating oil slicks, successful monitoring
necessitates the estimation of geographical parameters so
that proper measures are taken in tactical and strategic
responses. The first parameter which is of great importance
is the thickness of oil slicks [1]. This information is very
helpful for spill-containment because it gives an indication
about the total volume spilled. Another important task to
perform during oil-spills is to specify the oil type to predict
the environmental damage on the maritime life [2]. This
information can be analyzed from the physical characteristics
of the oil material, namely the relative dielectric constant
(also called permittivity) [3]. While visual techniques that
are based on slicks’ appearance are not reliable due to
light interference, state-of-the-art technologies for oil spill
surveillance include the use of multiple sensors [4]. Although

infrared sensors can be used for spill detection, the variation
in the slick thickness does not affect the brightness of the
infrared imagery [5] which makes these sensors not suitable
for thickness estimation. Laser-acoustic sensors are reported
to measure 6 mm slicks [6], but they cannot work under
all weather conditions, require a dedicated aircraft, and they
are expensive and bulky [7]. Alternatively, passive microwave
radiometry sensors show potential for thickness estimations,
but commercial instruments provide estimations for limited
ranges only, up to 3 mm as reported in [8]. Recent studies
used machine learning approaches to tackle the thickness
estimation [9] where convolutional neural network are applied
on hyperspectral images obtained using drones to detect oil
slicks with different thicknesses up to 3.5 mm. Overall, few
reliable methods capable of accurately measuring the thickness
of the oil on top of the sea surface have been advanced [4].

For oil classification, chemical methods or laser fluorometric
spectra can provide oil types [10], [11], but they require in-situ
sampling and are not adequate for fast intervention. Recent
machine learning algorithms are developed to overcome this
limitation by remotely classifying oil slicks using hyperspectral
sensors [12] and synthetic aperture radar [13]. Yet, to the best
of our knowledge, no previous research has tackled the problem
of estimating at the same time (1) the physical characteristics
of the oil slicks and (2) their thicknesses within the full range
from 1 to 10 mm using classical or machine learning algorithms
applied on radar data.

Previously, we targeted the thickness estimation by applying
an iterative procedure on measured reflectivities [14], maximum
likelihood algorithms [15], [16], and a support vector
regression model [17]. In this paper, we demonstrate how
a simple low-power low-complexity artificial neural network
(ANN)-based model can be used to not only accurately estimate
the thickness of oil slicks, but also to estimate their relative
permittivity for different oil-types classification.
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II. SYSTEM MODEL

A. Radar Reflectivity
At the system-level, the radar operates as a nadir-looking

system to allow the full capture of the reflectivity without losses
due to off-nadir back-scattering. To physically model the oil
slicks on top of the sea surface, we consider a multi-layer
structure (air, oil, and sea water) where each layer has its own
electrical properties and physical characteristics. The latter
determine the behavior of the electromagnetic (EM) field at the
boundaries of the different dielectric media which are assumed
to be nonmagnetic. Each medium in the multi-layer structure is
characterized by its relative dielectric constant physical property
εi for i ∈ {1, 2, 3}. We denote ε1, ε2, ε3 to be corresponding to
the air, oil, and sea water layer, respectively. The reflection (ρ)
coefficients for the different interfaces (air-oil, and oil-water)
are calculated respectively using:

ρij(εi, εj) =

√
εi −

√
εj√

εi +
√
εj

(1)

Across the boundaries of the different layers, where the
interaction with EM waves occurs, the electric field E is
conserved. Let E+

i , and E−
i , be the electric fields in the

medium i propagating towards to, and away from, the boundary
interface to another medium j, respectively. The propagation
of EM waves across the first interface between the air and the
oil layer is captured by (1). However, the propagation through
the second layer (oil) in the multi-layer structure will introduce
a phase shift δ which is dependent on the oil relative dielectric
constant ε2, the frequency of the transmitted electromagnetic
wave fk (we keep the sub-index k for consistency with the
following sections), and the thickness of the oil slick d. It is
given by:

δ(fk,
√
ε2, d) =

2π fk
√
ε2 d

c
(2)

where c is the speed of light. We can derive the reflectivity
(power reflection coefficient) for the three-layer structure, as
in [18], to get:

R(fk, εi, d)
i∈{1,2,3}

=

∣∣∣∣E−
1

E+
1

∣∣∣∣2 =
ρ212 + ρ223 + 2 ρ12 ρ23 cos(2 δ)

1 + ρ212 ρ
2
23 + 2 ρ12 ρ23 cos(2 δ)

(3)
The reflectivity R is a trigonometric function with period TR

that is dependent on the oil-refractive index and the frequency
of the electromagnetic wave. The period is expressed as:

TR(fk, ε2) =
c

2 fk
√
ε2

(4)

B. Oil-on-Ocean Surface Roughness
Two statistical attributes are of special importance to describe

the roughness of ocean surface: (1) the rms-height (denoted
by s) and (2) the surface correlation length which measures
how much the surfaces at different locations are statistically
correlated. Since we are interested in the surface parameters
that are relevant to the wavelength of EM waves, we define
for a surface its electromagnetic roughness ks [19] to be:

ks = 2π fk s (5)

Then, the scattering pattern will also include a non-coherent
component along all other directions. In that case, the
reflectivity along the specular direction will be noted as the
coherent reflectivity (Rcoh) [19], expressed as:

Rcoh = Re−4(ks cos(θi))
2

(6)

with θi being the incident angle of the EM wave to the
interfaces. When considering thick oil slicks, the thickness
is in the mm range. Such a thick layer dampens the ocean
waves and reduces the roughness of the surfaceIn open ocean
space and at very low wind speeds, the correlation length of
the ocean waves is large and the root mean square height
of the capillary waves is small. Hence, the effect of the oil
layer under calm ocean conditions is to smooth the sea surface
roughness [20] which is a consequence of practical importance
for oil-spill scene’s analysis. Hence, without loss of generality,
all interfaces in the following are assumed smoothed within
the radar cross section.

III. ESTIMATION MODEL

A. Features Selection

The reflectivity shown in (3) involves the altered features
of the sea surface by the covering oil slick. It is dependent
on the physical properties of the multi-layer structure (εi),
the frequency of the transmitted EM (fk), and the thickness of
the intermediate layer (d). Since the selection of transmitted EM
wave is a parameter that is controlled by the operator on-site,
and the physical properties of the air and water can be easily
calculated, then, post-processing the radar reflectivity values
will allow to extract the implicit information about the thickness
and the relative permittivity of the thick oil layer covering the
sea surface. Fig. 1 shows the theoretical reflectivities evaluated
at different frequencies (4, 8, and 12 GHz) and different relative
permittivities (2.8, 3, 3.3) for thicknesses of the oil slick in the
(1−10 mm) range. For the same frequency, the effect of the
variation in the relative permittivity on the reflectivity value
is really dependent on the oil thickness. For instance, at f =
4 GHz (blue plots) the reflectivity value is almost the same
between 1 and 4 mm even if the permittivity varies between
2.8 and 3.3. But, the reflectivity drops by more than 1 dB
for different permittivities when the oil thickness is 10 mm.
Similarly, at f = 12 GHz (red plots), the reflectivity drops
by more than 1 dB due to the permittivity variation within
thickness ranges (2.5−3.5) and (8.5−10) mm, whereas it varies
slightly between 4 and 7 mm. Also, by looking at the reflectivity
plots at the same frequency, they look very similar over the full
thickness range even if the relative permittivity of the oil slick
is changing. However, the reflectivity behavior varies a lot from
one frequency to another. For instance, at 4 GHz, the curve
of the reflectivity is monotonically decreasing slowly with the
thickness. Hence, for small thickness values, the difference
between the reflectivity values is very small, so the estimation
could go easily wrong. A different pattern is observed at higher
frequencies (8 or 12 GHz). The reflectivity curves admit a
steeper slope for small values of thicknesses which improves the
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Fig. 1: Theoretical reflectivities evaluated at different
frequencies (4, 8, 12 GHz), oil thicknesses (1−10 mm), and
oil relative permittivities (2.8, 3, 3.3).

estimation of oil slick thickness. However, the cyclic behavior
due to the periodicity of the reflectivity shown in 4 appears
clearly within the targeted thickness range (1−10 mm) for
8 or 12 GHz frequencies. Hence, using higher frequencies
introduces ambiguity in the estimation since many thicknesses
can give the same reflectivity value. This highlights the need
to process at a time multiple reflectivities evaluated at different
frequencies in order to provide distinctive reflectivities for each
oil thickness and permittivity. In our model, we will use 9
frequencies selected uniformly from C- (4−8 GHz) and X-
(8−12 GHz) bands. Therefore, the input features to the model
will be reflectivities evaluated at fk ∈ {4:1:12} GHz.

B. Neural Network Model

The machine learning model is a Regression ANN. Based
on a set of inputs, the ANN model is designed to predict two
output parameters as continuous quantities: the thickness of
oil slicks, and the relative dielectric constant. The selection
of the ANN and not other regression algorithms is due its
ability to handle complexity. Our problem is to extract the
thickness and permittivity of an oil spill using several sampled
reflectivities, our inputs and outputs have a highly nonlinear
relationship. In addition to that, ANNs benefit greatly from large
amount of data, which we have at our disposal. Concerning
the architecture of our model, we have decided to go with
3 hidden layers with respectively 12, 16 and 12 neurons in
each layer. The activation function used on these layers is the
rectified linear activation function (ReLU). We came up with
this simple architecture after carefully studying the complexity
of our problem and through trial and error. In our case, having
more layers and neurons would lead to overfitting, and having
less of them would prevent the model from encapsulating the
relationship between our inputs and outputs. For the remaining
hyperparameters, we are using the mean square error lost
function and the “Adam” optimizer with a learning rate of
0.001, which are typically used for regression problems.

C. Training Process

Monte Carlo simulations are performed in MATLAB to
generate the training data. The dielectric constant of the air is
ε1 = 1. The dielectric constant of the thick oil ε2 is assumed to
be real and selected from {2.8:0.1:3.3}. For the calculation of
sea water dielectric constant, ε3, we used the water temperature
tw as 20 ◦C, and the water salinity sw as 35 ppt. We consider
calm ocean conditions to capture the full reflectivity from the
multi-layer structure by normal incidence of the EM waves.
The noise in the system is considered to be additive white
Gaussian (AWGN), with variance of σ2 = 0.001. 10000 data
points are generated for every integer thickness value in (1−10
mm) and every permittivity value in 2.8:1:3.3, making the
overall number of data points to be 600000. The simulated
data is used to train the NN model. 80% of the simulated
data are used for training and the remaining 20% are used for
testing and validation.

D. Multiple Observations

To further improve our model’s accuracy, we also incorporate
multiple observations to boost our estimator’s performance. For
N observations evaluated at each frequency, the average of N
reflectivities is passed as an input feature to the NN model.
This approach targets the reduction of the AWGN’s effect on
the accuracy of the estimations. This averaging step will be
tested on the experimental data whereas a single observation
approach will be used for the testing on simulation data.

IV. SIMULATION RESULTS

Fig. 2 shows the predicted thicknesses (y-axis) versus the
actual tested ones (x-axis). For better visualizing the results,
the red line represents the ideal estimations when no error
occurs. The blue points are the estimations spanning over ± one
standard deviation around their mean. From the obtained results,
the predicted thicknesses are accurate to the ± 0.5 mm in most
cases. The error decreases when testing on integer thickness
values, and increases slightly when testing is performed on
fractional values. This is a great advantage of the model
because, even though the training is done based on integer
values for thicknesses, when testing the model on more realistic
thickness values which are fractional, the deviation in the
estimation is still small. Although the reflectivity shows cyclic
behavior with respect to the thickness, the ANN model can
explore their dependence over the full plausible range by jointly
analyzing the reflectivity behavior at multiple frequencies.
Therefore, as seen in fig. 2, the distribution of the estimations
does not show a high error value. For instance, testing the
model at 5.5 mm would still lead to estimations between 5
and 6.1 mm.

Similarly, fig. 3 shows the predicted relative permittivity
(y-axis) versus the actual value (x-axis). The vertical blue bars
represent the distribution of estimated values around the mean,
marked by ”x”. Relative permittivity values 2.9, 3, and 3.1
are approximated accurately where the shift in estimations’
mean is smaller than 0.05. The error in estimations for the
remaining values 2.8, 3.2, and 3.3 is higher. Fig. 2 and 3
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Fig. 2: Predicted thicknesses (y-axis) versus the actual values
(x-axis). The blue points are the estimations span over ± one
standard deviation around their mean.

Fig. 3: Error bars of predicted relative permittivity (y-axis)
versus the actual value (x-axis). x represents the mean of the
estimations.

clearly show that the ANN model can extract the geographical
parameters (thickness and relative permittivity of oil slicks)
from the collected multi-frequency reflectivity values within
an acceptable margin of error.

During an actual oil spill, slicks that are closer to the source
of spill are characterized by higher thicknesses. The thickness
gets gradually less thick going outwards of the initial spill
point. We replicate this specific scenario in a simulation using
the simulated reflectivities for thickness values ranging from 1
mm to 10 mm when the relative permittivity of the oil material
is 3. Results are displayed in fig. 4. The center of the spill has
the thickest thickness of 10 mm (dark brown) which decreases
uniformly to 1 mm (dark blue). At the top left, we see the
actual scenario. At the top right, the reconstruction of the
environment made by the trained ANN model is presented.
Similarly, the map at the bottom shows the estimations of the
relative dielectric constant for the oil slicks. Obtained maps
validate the accuracy of the model presented previously. The
overall layout of the oil spill is correctly detected, even with

Fig. 4: (Left) Actual thickness distribution of an oil spill
simulated scenario. (Right) Estimated thickness distribution
obtained by the ANN model. (Bottom) Estimated relative
permittivity distribution obtained by the ANN model.

some errors in the model’s estimations, most of the errors
fall around ± 1 mm of the actual thickness indicating that
our model would be valid a similar scenario of an actual oil
spill. The average estimation for the relative permittivity over
the full map is 3.03, which is very accurately predicting the
actual value. Since our approach is supposed to be used in real
scenarios, we validate its performance by applying it on in-lab
experimental data in the next section.

V. EXPERIMENTAL RESULTS

We use radar reflectivity measurements from an oil-spill
in-lab experiment detailed in [21]. The two parameters’
estimation is performed on experimental reflectivities measured
at 9 selected frequencies (4.38, 5.37, 5.99, 6.97, 7.98, 9.06,
10.14, 11.05, 11.86 GHz) which are very close to the integer
frequency values used before, when the actual thickness is
7 mm. Fig. 5 shows the estimated thickness and permittivity
values for different number of observations, N, as explained in
section III-D. Increasing the number of observations averages
out the noise effect and yields better estimation. For single
observation (N=1), the error in the estimation is 1.2 mm. When
N increases to 2, 5, and 10, the estimated thickness improves to
7.8, 7.7, and 7.6 mm. The estimated thickness and permittivity
converges to 7.65 mm and 2.85 respectively almost after 13
observations. Unfortunately, we are not able to compare the
estimated permittivity to the actual value since the latter has
not been measured during the in-lab experimental procedure.
The results show that the model can correctly estimate the
experimental oil thickness even though it was only trained on
simulated data and not exposed to any experimental data. This
reinforces the effectiveness of our approach for practical use.
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Fig. 5: Estimated thickness and permittivity obtained by
the ANN when processing experimental reflectivities while
increasing the number of observations.

TABLE I: Complexity of the ANN model on FPGA

LUT (%) BRAM (%) DSP (%) FF (%) Power [W]

Rolled 1.88 1.79 1.82 1.13 3.40·10−2

Unrolled 28.37 1.43 25.91 15.28 1.33·10−1

VI. FPGA IMPLEMENTATION

Using battery-powered devices like drones as potential
platforms, energy and power consumption is of high importance.
In contrast, ANNs often introduce high complexity in terms of
memory footprint and computational requirements. To show
the feasibility of our approach and verify the low-complexity
of our ANN, we present in Table I implementation results
on the low-cost, low-power Pynq Z1 FPGA. We implement
a sequential version of the ANN inference (rolled), using
only one processing element for each layer, as well as a
fully parallel version by instantiating a processing element
for each neuron (unrolled). The results show that only a small
fraction of the available resources of the FPGA is utilized
by our implementation. This is also reflected in the power
consumption which ranges between 34 and 133 mW. As the
power drawn by drones is in the order of 10th of Watts, the
power consumption of our ANN implementation is negligible.
This verifies the feasibility of our ANN-based approach and
demonstrated the suitability for a practical scenario.

VII. CONCLUSION

In this paper, we demonstrate how a simple ANN-based
model can be used not only to accurately estimate the thickness
of oil slicks, but also to estimate their relative permittivity for
classification. This work is a proof-of-concept that active radar
sensors data, processed by low-power low-complexity ANNs,
can be used as complementary oil-spills monitoring systems for
quick intervention. It is a step forward in the oil-spill remote
sensing field towards practical solutions. This concept can be
further developed by using larger and more complex machine
learning models, and with additional more diversified training
data of higher quality to achieve better thickness estimations
in varied environments.
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