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Abstract—In this paper, we study the joint design of transmit
waveforms and receive filter for the multiple-input multiple-
output (MIMO) radar with space-time adaptive processing (STAP),
wherein the complex environment that involves both clutter and
jamming signals is considered. We choose to simultaneously
design both the fast-time waveform and slow-time coding among
transmitted pulses, together with the design of adaptive processing
at receiver, which therefore leads to a three-dimensional STAP
for MIMO radar. Specifically, we maximize the signal-to-jammer-
plus-clutter-plus-noise ratio at the output, and meanwhile, we
ensure the constant-modulus and similarity constraints for the
waveform transmission. Based on this, we formulate the joint
design as a non-convex optimization problem, and then recast it
into a form that allows the application of alternating direction
method of multipliers to find its solution. Moreover, we propose an
algorithm with fast convergence speed for the conducted design,
whose effectiveness is verified by simulations.

Index Terms—Joint design, MIMO radar, spatial fast and
slow-time waveforms, space-time adaptive processing (STAP).

I. INTRODUCTION

As a research field of significant interest, the multiple-
input multiple-output (MIMO) radar has attracted considerable
attention in recent years [1]–[6]. It has been verified by
various research to enable superiorities such as improved
parameter identifiablity and angular resolution [1], increased
upper limit on the number of resolvable targets [1], extended
array aperture by virtual array [3], etc. In recent years,
these advantages have stimulated the utilization of space-
time adaptive processing (STAP) technique in MIMO radar in
order to suppress both clutter and hostile jamming signals [6].
Compared to the conventional STAP in phased-array radar, the
MIMO radar STAP has been proved by the research of ground
moving target indication to have the ability of attaining lower
minimum detectable velocity, or in other words, the narrower
clutter/jamming mitigation notch versus Doppler frequencies
[6]–[8]. However, in the context of complex environment such
as the presence of diffuse jamming via multi-path propagation
coexisting with clutter signals, the three-dimensional (3D)
STAP is typically required for the MIMO radar [7].

There have been recent research focusing on developing
strategies at the transmitting end of MIMO radar [9]–[11].
By means of devising correlated waveforms [9], waveform
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covariance matrix [10], or transmit beamspace matrix [11],
these strategies allow to achieve desired properties such as
arbitrary beampattern (possibly flat) over a certain spatial sector,
reduced sidelobe levels of waveforms, or improved transmit
coherent processing gain. Considering that these properties
may benefit MIMO radar STAP from the perspective of
output signal-to-jammer-plus-clutter-plus-noise ratio (SJCNR),
and conventional MIMO radar assumes fixed waveforms that
are non-adaptive, it is worth studying the joint design of
transmit waveforms and receive filter for MIMO radar STAP.
To distinguish from the existing works on transmit waveform
and receive filter design that focus either on fast- or slow-
time waveforms [12]–[17], it is worth designing simultaneous
waveform transmission in both the fast- and slow-time domains.

In this paper, we study the problem of joint waveform
transmission and receive filter design for the MIMO radar
STAP. Since the complex environment that simultaneously
involves clutter and jamming signals is present, we therefore
devise both fast and slow-time waveform transmissions for the
joint design. Our goal is to improve the clutter and jammer
suppression performance for the three-dimensional (3D) STAP
of MIMO radar. To be specific, We maximize the SJCNR
at the output of receiver, and meanwhile, we guarantee the
constant-modulus and similarity constraints to enable desirable
properties such as spectral agility for the transmitted waveforms.
Based on this idea, we formulate the design as a non-convex
optimization problem, and then reformulate it into a proper
form which supports the use of alternating direction method of
multipliers (ADMM) for solutions. To this end, we elaborate
a gradient-based Lagrangian for the ADMM, by which we
seek to find solutions to the design problem via iterations. A
closed-form solution is attained at each iteration, which finally
leads to the development of an algorithm for the joint design.
Simulation results show the effectiveness of our proposed
algorithm, wherein fast convergence speed and simultaneously
good similarity to desired waveforms are achieved.

Notations: We use bold upper case, bold lower case, and
italic letter to donate matrices, column vectors, and scalars,
respectively. Notations (·)T, (·)H, ⊗, ⊙, D(·), vec(·), E{·}, |· |,
and [·]i,j are respectively the transpose, conjugate transpose,
Kronecker product, Hadamard product, diagonalization,
column-wise vectorization, expectation, modulus, and the (i, j)-
th element of a matrix. In addition, C and IP stand for the
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complex field and the P × P identity matrix, respectively.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider an airborne colocated MIMO radar with M transmit
and N receive antenna elements. Both the transmit and receive
arrays are closely spaced so that they share an identical spatial
angle for a far-field target. We assume that the MIMO radar
transmits a burst of L pulses in one radar coherent processing
interval (CPI). The transmit waveform matrix in the fast-time
domain is denoted by S ≜ [s1, ..., sM ]T ∈ CM×P , where P
is the length of each waveform launched at a certain transmit
antenna element. The slow-time waveform, denoted as a vector
given by u ∈ CL×1, is used for inter-pulse modulation. By
stacking all the slow- and fast-time samples at the receiving
end, the observation of a target located at the spatial angle θt
with normalized Doppler frequency ft can be expressed as

yt(u,S) = αt(d(ft)⊙ u)⊗ (STa(θt))⊗ b(θt) (1)

where αt is the complex reflection coefficient of the target,
a(θt), b(θt), and d(ft) are respectively the transmit, receive,
and Doppler steering vectors of the target given as follows

a(θt) ≜ [1, e−j2πdT sin θt/λ, ..., e−j2π(M−1)dT sin θt/λ]T (2)

b(θt) ≜ [1, e−j2πdR sin θt/λ, ..., e−j2π(N−1)dR sin θt/λ]T (3)

d(ft) ≜ [1, ej2πft , ..., ej2π(L−1)ft ]T. (4)

with dT and dR being the distances of each two neighboring
antenna elements at transmitter and receiver, respectively, and
λ being the wavelength.

We assume the clutter range ring is separated into Nc

patches, which are statistically independent between each other.
Moreover, we assume J jamming sources are present, and each
jamming is propagated through Q independent paths, including
the direct, specular, and diffuse ones. Hence, the observed
clutter and jamming signals can be expressed respectively as

yc(u,S) =

Nc∑
i=1

ξi(d(fi)⊙ u)⊗ (STa(θi))⊗ b(θi) (5)

yj =

J∑
ȷ=1

Q∑
q=1

βȷ,qηȷ,q ⊗ b(ϑȷ,q) (6)

where ξi is the complex reflection coefficient of the ith clutter
patch, βȷ,q, ηȷ,q ∈ CLP×1, and ϑȷ,q are respectively the
complex magnitude, the stacked slow- and fast-time samples,
and the spatial angle, all associated with the ȷ-th jamming
source scattered through the q-th propagation,

The overall received data vector can be expressed as

y(u,S) = yt(u,S) + yc(u,S) + yj + yn (7)

where yn is the white Gaussian distributed noise vector. Based
on (7), the target-free jammer-plus-clutter-plus-noise covariance
matrix can be expressed as

Ry(u,S) ≜ E{yc(u,S)y
H
c (u,S)}+ E{yjy

H
j }+ E{yny

H
n }

≜ Rc(u,S) +Rj +Rn (8)

where the received clutter, jammer, and noise are assumed to
be statistically independent, and Rc(u,S), Rj, and Rn are
their corresponding covariance matrices.

Let w ∈ CNPL×1 be the adaptive weight vector of the
receive filter, et(u,S) ≜ (d(ft)⊙ u)⊗ (STa(θt))⊗ b(θt) be
the overall steering vector of the target, and Rj+n ≜ Rj +Rn.
The output SJCNR of the 3D STAP can be expressed as

SJCNR =
|αt|2 · |wHet(u,S)|2

wH (Rc(u,S) +Rj+n)w
. (9)

Our goal is to maximize the output SJCNR given in (9) in the
case of some practical constraints on waveform transmissions.
In particular, we seek to find the optimum fast- and slow-
time waveforms with good characteristics including constant
modulus and certain similarities to quiescent references, so
that the SJCNR performance of the MIMO radar STAP can
be maximized. Here, we formulate the joint design as follows

max
w,u,S

SJCNR

s.t. |[S]m,p − [S0]m,p| ≤ δ,m = 1, . . . ,M ; p = 1, . . . , P

|u(l)− u0(l)| ≤ ϵ, l = 1, . . . , L

|[S]m,p| = c1,m = 1, . . . ,M ; p = 1, . . . , P

|u(l)| = c2, l = 1, . . . , L

|wHet(u,S)| = 1 (10)

where S0 ∈ CM×P and u0 ∈ CL×1 are the quiescent
waveform matrix and vector for reference in fast- and slow-time
domains, respectively, δ > 0 and ϵ > 0 are parameters of user
choice controlling the tolerance on differences between the
designed and quiescent waveform references in fast- and slow-
time domains, respectively, and c1 and c2 are respectively the
constant magnitudes of fast- and slow-time waveform elements.

III. JOINT FAST- AND SLOW-TIME WAVEFORMS AND
RECEIVE FILTER DESIGN FOR MIMO STAP

In this section, we first derive the covariance matrices of
clutter and jamming signals, based on which we then present a
gradient-based approach to solving the joint design via ADMM.

A. Derivations of Covariance Matrices

Introducing x ≜ vec{ST} ∈ CMP×1, applying the property
that vec{ABC} = CT ⊗ Avec{B} by enabling A = IP ,
B = ST, and C = a(θi), then (5) can be rewritten as follows

yc(u,x)=

Nc∑
i=1

ξi(d(fi)⊙u)⊗
((
aT(θi)⊗ IP

)
x
)
⊗ b(θi)

(11)

which can be further derived as

yc(u,x) =

Nc∑
i=1

ξi(d(fi)⊙u)⊗ aT(θi)⊗ IP ⊗ b(θi)x (12)

where the elementary properties of Kronecker product is
employed for deriving (11) to (12).
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Expanding the Hadamard product in (12), we can further
obtain the derivation as follows

yc(u,x) =

Nc∑
i=1

ξiD(d(fi))⊗
(
aT(θi)⊗ IP ⊗ b(θi)x

)
u.

(13)

Using (8), (12), and (13), the clutter covariance matrix
Rc(u,x) can be obtained as

Rc(u,x) =

Nc∑
i=1

|ξi|2Tx(fi, θi)xx
HTH

x (fi, θi) (14)

=

Nc∑
i=1

|ξi|2Tu(fi, θi)uu
HTH

u (fi, θi) (15)

where

Tx(f, θ) ≜ (d(f)⊙ u)⊗ aT(θ)⊗ IP ⊗ b(θ) (16)

Tu(f, θ) ≜ D(d(f))⊗
(
aT(θ)⊗ IP ⊗ b(θ)x

)
. (17)

Regarding the covariance matrix of jamming, we deal with
the common barrage-noise-type jammers, which are generally
mutual independent and Gaussian distributed. Using (6), the
jamming covariance matrix can be obtained as

Rj =

J∑
ȷ=1

Q∑
q=1

Q∑
q′=1

βȷ,qβ
∗
ȷ,q′R

η
ȷ,q,q′ ⊗

(
b(ϑȷ,q)b

H(ϑȷ,q′)
)
(18)

where Rη
ȷ,q,q′ ≜ E{ηȷ,qη

H
ȷ,q′} ∈ CLP×LP is the correlation

matrix between the jamming signals propagated through the
q-th and q′-th paths from the ȷth jamming source.

In addition, the noise covariance matrix Rn takes the form
given by Rn = σ2

nINPL.

B. Joint Waveform Synthesis and Adaptive Filter Design

For fixed waveforms u and x, the design problem (10)
reduces to the MVDR optimization problem given as follows

max
w

|αt|2|wHet(u,x)|2

wHRc(u,x)w +wHRj+nw

s.t. |wHet(u,x)| = 1 (19)

whose solution is given by

w =
(Rc(u,x) +Rj+n)

−1
et(u,x)

eHt (u,x) (Rc(u,x) +Rj+n)
−1

et(u,x)
. (20)

Stacking x and u into a new vector ϕ ≜ [xT,uT]T ∈
C(MP+L)×1, inserting (20) into (9), then we can rewrite the
design problem (10) into the form as follows

min
ϕ

− eHt (ϕ) (Rc(ϕ) +Rj+n)
−1

et(ϕ)

s.t. |ϕ(r)− ϕ0(r)| ≤
{

δ, r = 1, . . . ,MP
ϵ, otherwise

|ϕ(r)| =
{

c1, r = 1, . . . ,MP
c2, otherwise

(21)

where ϕ0 ≜ [(vec{S0})T,uT
0 ]

T ∈ C(MP+L)×1.
To solve (21), we introduce a virtually auxiliary vector

z ∈ CMPL×1 to add an additional constraint, i.e., ϕ = z.
Therefore, the optimization problem (21) can be transformed
into the form as follows

min
ϕ,z

− eHt (ϕ) (Rc(ϕ) +Rj+n)
−1

et(ϕ)

s.t. |z(r)− ϕ0(r)| ≤
{

δ, r = 1, . . . ,MP
ϵ, otherwise

|z(r)| =
{

c1, r = 1, . . . ,MP
c2, otherwise

ϕ = z (22)

to which the ADMM framework [18] can be applied for finding
its solutions.

Note that the objective function of (22) is difficult to handle.
To tackle it, we use its first-order Taylor expansion at the
point ϕ(k) obtained after the kth iteration to construct the
approximated augmented Lagrangian [19] of (22) given by

L(ϕ, z,λ)=F(ϕ(k))+
(
∇(k)F(ϕ)

)
Hϕ+λH(ϕ−z)+ρ∥ϕ−z∥2

(23)

where F(ϕ) ≜ −eHt (ϕ) (Rc(ϕ) +Rj+n)
−1

et(ϕ), λ ∈
CMPL×1 is the Lagrangian multiplier vector, and ρ > 0 is the
penalty parameter. Based on this, we can rewrite (22) as

min
ϕ,z,λ

L (ϕ, z,λ)

s.t. |z(r)− ϕ0(r)| ≤
{

δ, r = 1, . . . ,MP
ϵ, otherwise

|z(r)| =
{

c1, r = 1, . . . ,MP
c2, otherwise

. (24)

Note that the first component of the Lagrangian (23) is
constant, which is immaterial to optimization, while the second
component of (23), denoted by ς , can be expanded as follows

ς ≜
(
∇(k)F(ϕ)

)H
ϕ =

(
υ(k)
x

)H
x+

(
υ(k)
u

)H
u+ const. (25)

where υx and υu are respectively defined as

υx ≜− 2TH
x (ft, θt)ΩTx(ft, θt)x+ 2

Nc∑
i=1

|ξi|2TH
x (fi, θi)

×ΩHTx(ft, θt)xx
HTH

x (ft, θt)ΩTx(fi, θi)x (26)

υu ≜− 2TH
u (ft, θt)ΩTu(ft, θt)u+ 2

Nc∑
i=1

|ξi|2TH
u (fi, θi)

×ΩHTu(ft, θt)uu
HTH

u (ft, θt)ΩTu(fi, θi)u (27)

with Ω ≜ (Rc(u,x) +Rj+n)
−1.

Till now, we can first apply the standard ADMM procedures
to solve the unconstrained version of (24), together with
the formulated Lagrangian (23). Then, we enforce a proper
projection to its feasibility set in terms of constraints that are
maintained. Here, at the (k + 1)-th iteration, the resulting
ADMM update for (24) in terms of the variable z after
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Algorithm 1 3D Joint Design Algorithm.

1: Initialization: z(0),ϕ(0),λ(0), ρ, k ← 0
2: repeat
3: Construct T(k)

x and T
(k)
u via (16) and (17)

4: Calculate υ
(k)
x and υ

(k)
u via (26) and (27)

5: Update z, ϕ, and λ via (28), (31), and (32)
6: k ← k + 1
7: until convergence
8: Recover S and u from ϕ
9: Calculate w via (20)

projection can be expressed as [13]

z(k+1)(r)=κ(r)


ejτ

(k)(r) , τ (k)(r)∈ [γ(r),γ(r)+σ(r)]

ejγ(r) , τ (k)(r)∈ [γ(r)+ σ(r)
2 −π,γ(r)]

ej(γ(r)+σ(r)) , otherwise

(28)

where τ ≜ arg(ϕ+ 1
2ρλ), κ(r)=

{
c1, r=1, . . . ,MP
c2, otherwise

, and

γ(r)=

{
arg(ϕ0(r))−arccos(1−δ2/2), r=1, . . . ,MP
arg(ϕ0(r))−arccos(1−ϵ2/2), otherwise

(29)

σ(r)=

{
2arccos(1−δ2/2), r=1, . . . ,MP
2arccos(1−ϵ2/2), otherwise . (30)

Similarly, the ADMM update for (24) in terms of ϕ can be
expressed in the form given as follows

ϕ(k+1) = z(k+1) − 1

2ρ

(
λ(k) +

[
(υ(k)

x )T, (υ(k)
u )T

]
T
)

(31)

and the update of the Lagrangian multiplier vector is given by

λ(k+1) = λ(k) + 2ρ
(
ϕ(k+1) − z(k+1)

)
. (32)

The overall procedures for the joint design are summarized
in Algorithm 1, for which the Steffensen-type acceleration [20]
with fixed-point iterations can be applied.

IV. SIMULATION RESULTS

In this section, we evaluate the performances of our proposed
algorithm, including the SJCNR convergence and similarity
performances. We consider a colocated MIMO radar equipped
with M = 2 transmit and N = 3 receive antenna elements
spaced half-wavelength apart from each other, which emits
L = 5 pluses in one radar CPI. The fast-time code length
of waveforms is set to be P = 128. We assume the target is
located at θt = 20° with a normalized Doppler frequency ft =
0.35, whose initial signal-to-noise ratio is SNR = 10 dB. In
total, there are Nc = 10 clutter patches uniformly distributing
within the spatial range [−90°, 90°], and there are J = 2
independent barrage-noise-type jammers propagating through
Q = 2 paths. All jamming signals and their spatial directions
are randomly generated. We choose spectrally-agile waveforms
whose stop-bands of power spectral density (PSD) are set
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Fig. 1: SJCNR performance versus the number of iterations.

to be [0.5π, 0.75π] ∪ [1.25π, 1.5π] as the fast-time quiescent
references, and choose unimodular random sequences as the
slow-time references. The constant magnitudes are set to be
c1 = c2 = 1.

Example 1: SJCNR Convergence Evaluation. We evaluate the
obtained SJCNR performance versus the number of iterations.
The tolerance parameter for fast-time waveform approximation
is set to be δ = 0.1, 0.5, and 2 (corresponding to the similarity-
free case [13]), while the slow-time similarity is assumed to
be secondary, whose tolerance parameter is set to be ϵ = 2.

It can be seen from Fig. 1 that the proposed algorithm shows
good convergence speed for all the three cases tested in this
example, which verifies its capability on clutter and jammer
suppression. After 5 iterations, the SJCNR for the similarity-
free case (δ = 2) has reached 9.66 dB, while the SJCNRs
for the other two tested cases (δ = 0.1 and 0.5) has reached
7.96 dB and 9.05 dB, respectively. It can also be seen that
the SJCNR under the most strict constraint (i.e., δ = 0.1)
improves only 0.41 dB compared to the initial SJCNR before
optimization. This means a strict similarity constraint leads
to a poor SJCNR performance, and a trade-off between the
SJCNR performance and the similarity to reference waveforms
is normally made.

Example 2: Similarity Performance Evaluation. We evaluate
the similarity performance of the proposed algorithm, wherein
we show the normalized PSD approximation of the two
designed fast-time waveforms to their references (marked as
‘Ref 1’ and ‘Ref 2’). The PSD level of the reference waveforms
in stop-bands is around −45 dB on average, and the worst
spectral attendation is −39.65 dB. Here, a lower level of PSD
in the stop-bands means a higher similarity to the references.

It can be seen from Fig. 2 that all the designed waveforms
show low PSD levels in the stop-bands, meaning that the
proposed algorithm has met the condition of similarity
constraints. For the first waveform reference, it can be
seen from Fig. 2(a) that the maximum, minimum, and
average PSD levels in stop-bands for δ = {0.1, 0.5} are
around {−10.40,−21.47} dBs, {−37.57,−49.54} dBs, and
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(a) PSD of the first waveform.
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(b) PSD of the second waveform.

Fig. 2: PSDs of two designed fast-time waveforms for MIMO radar and their references.

{−20,−35} dBs, respectively. For the second waveform
reference, it can be seen from Fig. 2(b) that the maximum,
minimum, and average PSD levels obtained in stop-bands
for δ = {0.1, 0.5} are around {−10.08,−22.71} dBs,
{−28.22,−40.43} dBs, and {−20,−35} dBs, respectively.

V. CONCLUSION

We have studied the problem of jointly designing transmit
waveforms and receive filter for the 3D STAP of MIMO radar,
which deals with the complex environment where both clutter
and jamming signals are present. Both fast-time waveforms
and slow-time coding among pulses have been considered in
the joint design. To be specific, we have maximized the SJCNR
at the output, and have also guaranteed the constant-modulus
and similarity constraints for the waveform transmission. A
non-convex optimization problem has been formulated, which
has been then recast into a form that allows the application of
ADMM for finding solutions. An algorithm has been proposed
for the joint design problem, whose effectiveness has been
verified by simulations.
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