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Abstract—This paper investigates the problem of joint es-
timation of delay, direction of arrival (DoA), and Doppler
when an orthogonal frequency-division multiplexing (OFDM)
signal is used for probing. A gridless approach is taken where
the above three parameters live on a continuous space rather
than a discrete grid. A low-rank multilevel Hankel matrix is
used to capture the underlying structure of the back-scattered
signals. A convex optimization, termed as Hankel nuclear norm
minimization (HNNM), is developed for denoising and parameter
estimation, and solved by alternating direction method of multi-
pliers (ADMM). Simulations demonstrate that HNNM is robust
to noise, and can go beyond the minimum separation bound
required by another gridless method atomic norm minimization.

Index Terms—gridless sparse method, Hankel matrix, nu-
clear norm, orthogonal frequency-division multiplexing (OFDM),
super-resolution

I. INTRODUCTION

This paper focuses on sensing via orthogonal frequency-
division multiplexing (OFDM) signals. OFDM plays an im-
portant role in both wireless communications and sensing,
and shows great potential for joint radar and communica-
tions systems [1], [2]. It supports high-rate data transmission
for communications, simplifies signal processing for radar
estimation and communication equalization, and allows the
usage of the same hardware platform to perform sensing
and communications. OFDM based dual-functionality systems
have become research and industry hotspots in applications
such as autonomous driving [3], [4].

The classical signal processing for delay and Doppler es-
timation is correlation-based [5]. The back-scattered signals
are matched-filtered using the transmitted signal. Targets can
then be detected by searching for the proper signal delay and
Doppler. In this setting, the width of the main lobe of the
correlation function decides resolution, which is the minimum
gap between two point targets that are distinguishable.

The rise of sparse signal processing [6] helps in improving
resolution when the number of targets is small. Use delay
estimation as an example. Fit the delay with a fine discrete
grid, of which the gap between adjacent grid points can be

smaller than the resolution of matched filtering. Though the
resulted linear equation system is underdetermined, sparse
recovery techniques such as orthogonal matching pursuit
(OMP) [7] and subspace pursuit [8] can provide reasonably
accurate estimates. However, there is a limit on how fine the
discrete grid can be [9]. Superfine grid not only results in huge
computational complexity but also leads to strong coherence
in signal dictionary and the failure of sparse recovery [10].

Recently gridless techniques have received more and more
attention. They also require small number of targets but param-
eters of the targets can live on a continuous space rather than a
discrete grid [11]. One well-established technique is multiple
signal classification (MUSIC) [12]. Its core is to identify the
signal and noise subspaces from back-scattered signals. The
subspace identification step is achieved by straightforward sin-
gular value decomposition (SVD) without considering possible
structures of the subspaces [13]. It may not perform well at
low signal-to-noise ratios (SNRs).

A modern gridless technique is atomic norm minimization
(ANM) [14]–[16]. ANM can be written as a convex semidef-
inite programming involving a low-rank Toeplitz matrix. This
Toeplitz matrix enforces the structure of the signal space,
which gives ANM a greater robustness to noise compared
to MUSIC [17]. However, it is well known that ANM has
minimum separation requirement, meaning that it may fail if
the distance between two targets is smaller than the separation
bound [10], [15].

Motivated by the recent advances of multidimensional har-
monic retrieval [11], [18] and passive radar sensing [5], we
develop a gridless approach using Hankel matrices, termed
as Hankel nuclear norm minimization (HNNM). In particular,
we are interested in using HNNM to jointly estimate delay,
direction of arrival (DoA), and Doppler when OFDM is used
as the probing signal. Similar to ANM, HNNM makes sure that
the estimated signal subspaces are generated from exponential
vectors, and hence is expected to be noise-robust. At the same
time, it has been shown in [19] that in theory there is no
minimum separation requirement for Hankel matrix approach.

Similarly, [20] also recovers the delay, DoA and Doppler
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by utilizing a Hankel related approach called Hankel ma-
trix nuclear norm regularized low-CP-rank tensor completion
(HMRTC) [18]. Nonetheless, the optimization formulation
given in [20] is non-convex, and the parameters are separately
estimated, leading to obtaining suboptimal parameter estima-
tions [21].

In this paper, we first show that the received signal can be
modeled by a linear operator acting on an outer product of
exponential vectors. We then apply HNNM to the received
signal for the purpose of joint parameter estimation. HNNM
starts by constructing a low-rank multilevel Hankel matrix to
capture the signal structure, then attempts parameter estimation
via nuclear norm minimization of this multilevel Hankel
matrix. In numerical simulations, HNNM is compared with
on-grid method OMP and gridless method MUSIC. Results
demonstrate that HNNM is not only robust to noise but also
can go beyond the minimum separation required by ANM.

II. SIGNAL MODEL AND STRUCTURES

Consider an OFDM signal. A baseband time-domain OFDM
signal that contains M consecutive OFDM blocks can be
written as [4]

x(t) =

M−1∑
m=0

xm(t−mT ′), (1)

where xm(t) denotes the OFDM symbol in the m-th OFDM
block, T ′ = T + Tcp is the OFDM symbol duration, T is
the elementary symbol duration and Tcp is the cyclic prefix
duration. Each OFDM symbol can be written as

xm(t) =

N/2−1∑
n=−N/2

sm[n]ej2πn∆f tc(t), (2)

where N is the number of orthogonal subcarriers, sm[n]
denotes the complex modulation symbol corresponding to the
n-th subcarrier, ∆f = 1/T represents subcarrier spacing, and
c(t) denotes a rectangular window function with amplitude 1
for 0 ≤ t ≤ (Tcp + T ) and 0 otherwise [4].

The baseband signal is up-converted to x̃(t) = ej2πfctx(t)
where fc is the carrier frequency, and then transmitted.

Suppose that the received signal is back-scattered from K
many targets. Index the back-scattered signal components by
k. Each is characterized by the associated attenuation Ak,
round-trip propagation delay τk = 2Rk/c, and Doppler shift
fd,k = fc(2vk/c) [4], where Rk and vk are the target’s range
and speed relative to the receiver respectively, and c is the
speed of light. Further assume that the receiver is equipped
with a uniform linear antenna array composed of L many
antenna elements. The uniform inter-element spacing d is
assumed to be a half wavelength λ/2 = c/2fc. Denote the
DoA of the back-scattered signal from k-th target by θk, and
θk is the azimuth. Hence, the received signal at the l-th antenna
element is then given by

yl(t) =

K∑
k=1

Ake
j2πfd,kte−jπl cos(θk)x(t− τk) + wl(t), (3)

where w(t) represents the additive noise.
Applying the Fourier transform to the received signal in

the m-th OFDM block. As derived in [5], the n-th subcarrier
signal received at the l-th antenna element can be written as

Ỹ
(m)
l,n :=

∫ T

0

e−j2πn∆f tyl(t+mT ′)dt

≈Tsm[n]

K∑
k=1

(
Ak

e−jπ[l cos(θk)−(2m+1)fd,kT
′+2n∆fτk]

)
+Wl,m,n,

(4)
where the approximation is based on the fact that fd,k is
typically small and hence ej2πfd,kt ≈ ej2πfd,kT

′/2 = ejπfd,kT
′

for t ∈ [0, T ] [5]. Wl,m,n is i.i.d. Gaussian distributed.
Arrange Ỹ

(m)
l,n into a 3-way tensor indexed by l, m and n,

and denote it by Ỹ with slight abuse of notations. Then (4)
can be reformulated as

Ỹ
(m)
l,n ≈ Tsm[n]Bl,m,n +Wl,m,n. (5)

Then the tensor form of (4) is

Ỹ ≈ A(B) +W , (6)

where A(.) is a linear operator defined via (5), B ∈ CL×M×N

is a rank K tensor given by

B =

K∑
k=1

Ake
jπfd,kT

′
aL

(
1

2
cos(θk)

)
◦ aM (−fd,kT

′) ◦ aN (∆fτk) ,

(7)

aL(α) =
[
1, e−j2πα, · · · , e−j2π(L−1)α

]T
is a steering vector of length L. Symbol ◦ denotes the outer
(tensor) product.

III. PARAMETER ESTIMATION VIA HANKEL NUCLEAR
NORM MINIMIZATION (HNNM)

The process of parameter estimation utilizes the structure
of the tensor B. In this section, we first show that B can
generate a low-rank 3-level Hankel matrix, then formulate a
convex optimization to recover B from noisy measurements
Ỹ , and finally extract delay-DoA-Doppler information.

A. Multilevel Hankel Matrix Construction

A Hankel matrix is a matrix of which each ascending skew-
diagonal from left to right is constant. Let b ∈ CL. A Hankel
matrix H ∈ CL1×L2 , where L1+L2 = L+1, can be generated
via

H = H(b) =


b1 b2 · · · bL2

b2 b3 · · · bL2+1

...
...

. . .
...

bL1
bL1+1 · · · bL

 .

The 3-way tensor B can generate a 3-level Hankel matrix.
Let L1+L2 = L+1, M1+M2 = M+1, N1+N2 = N+1. A
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3-level Hankel matrix H = HL3(B) ∈ C(L1M1N1)×(L2M2N2)

can be generated recursively as follows [11]:

Hm,n =


B1,m,n B2,m,n · · · BL2,m,n

B2,m,n B3,m,n · · · BL2+1,m,n

...
...

. . .
...

BL1,m,n BL1+1,m,n · · · BL,m,n

 ,

Hn =


H1,n H2,n · · · HM2,n

H2,n H3,n · · · HM2+1,n

...
...

. . .
...

HM1,n HM1+1,n · · · HM,n

 ,

H =


H1 H2 · · · HN2

H2 H3 · · · HN2+1

...
...

. . .
...

HN1 HN1+1 · · · HN

 ,

where Hm,n ∈ CL1×L2 are 1-level Hankel matrices, Hn ∈
C(L1M1)×(L2M2) are 2-level Hankel matrices. See Fig. 1 for
an illustration.

Fig. 1. An illustration of the 3-level Hankel matrix construction

A superposition of a small number of steering vectors gener-
ates a low-rank Hankel matrix. If b =

∑K
k=1 cka

L(αk) where
ck ̸= 0, then H = H(b) =

∑K
k=1 cka

L1(αk)a
L2(αk)

T.
When K < min(L1, L2), H is rank-K Hankel matrix.

Similarly, a superposition of outer products of steering
vectors can generate a low-rank multilevel Hankel matrix. For
notational simplicity, rewrite tensor B in (7) as

B =

K∑
k=1

cka
L(αk) ◦ aM (βk) ◦ aN (γk)

with nonzero ck. It can be verified that

H = HL3(B) =

K∑
k=1

ck
(
aN1(γk)⊗ aM1(βk)⊗ aL1(αk)

)
(
aN2(γk)⊗ aM2(βk)⊗ aL2(αk)

)T
,

where the symbol ⊗ denotes Kronecker product [18]. When
K is sufficiently small, e.g., K ≪ min(L1M1N1, L2M2N2),
the 3-level Hankel matrix H is of low-K-rank.

B. The Convex Optimization Formulation of HNNM

By exploiting the low-K-rank structure of the 3-level Han-
kel matrix H , we formulate a convex optimization problem
for parameter estimation in the following Lasso form

min
B

1

2
∥Ỹ −A(B)∥2F + λ∥HL3(B)∥∗, (8)

where ∥ · ∥F and ∥ · ∥∗ denote Frobenius and nuclear norms
respectively, λ > 0 is a regularization constant appropriately
chosen. As the objective function is not smooth, we apply
alternating direction method of multipliers (ADMM) to solve
it. The ADMM reformulation of (8) is given by

min
B,H

1

2
∥Ỹ −A(B)∥2F + λ∥H∥∗,

s.t. H = HL3(B)

(9)

The augmented Lagrangian for this problem is

Lρ(B,H,v) =
1

2
∥Ỹ −A(B)∥2F + λ∥H∥∗

+
ρ

2
∥H −HL3(B) + v/ρ∥2F − ∥v∥2F /(2ρ),

(10)
where ρ is a positive penalty parameter and v is the Lagrangian
multiplier. (9) can be efficiently solved since ADMM admits
closed form solutions: the update of B is a least squares
problem; and the update of H can be solved by applying
SVD and soft-thresholding function.

Let B⋆ be the optimal solution obtained by solving (9).
As long as B⋆ is faithfully recovered, the delay, DoA, and
Doppler can be jointly extracted from B⋆ using the reduced-
dimension MUSIC method developed in [22], which has the
same performance as conventional MUSIC [12] but with
significantly reduced computational complexity. In the near
future, the ADMM process time could be further reduced by
incorporating fast SVD methods.

IV. NUMERICAL IMPLEMENTATION

In this section, we compare the joint delay-DoA-Doppler
estimation performance of the proposed HNNM method with
the on-grid algorithm OMP, and subspace method MUSIC.

TABLE I
OFDM SIGNAL SPECIFICATIONS

Digital Modulation 4QAM
Carrier Frequency fc 300 MHz
Subcarrier Spacing ∆f 1 kHz

No. Subcarriers N 36
OFDM Symbol Length T 1 ms

Cyclic Prefix Tcp 0.25 ms
OFDM Block Length T ′ 1.25 ms
No. OFDM Blocks M 5

No. Targets K 3

The parameter settings of the OFDM signal applied in this
simulation are shown in Table. I. The ground truth of delays,
DoAs and Doppler shifts are illustrated in Table. II. We set the
number of antenna elements L = 7. As for the OMP algorithm,
we create a discrete grid with density of [0 : 0.01 : 0.7]× Tcp

for τk, [0◦ : 1◦ : 180◦] for θk and [5 : 1 : 20]fc/c for fd,k.
In generating the 3-level Hankel matrix in HNNM, we set
L1 = 3, M1 = 5 and N1 = 4.

Fig. 2 compares the performance of HNNM and MUSIC
at SNR= 10 dB, 0 dB and −5 dB. In all sub-figures, the
grey vertical lines represent the values of the ground truth. It
can be observed that HNNM performs well in estimating all
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(a) Delay (SNR = 10 dB) (b) DoA (SNR = 10 dB) (c) Doppler (SNR = 10 dB)

(d) Delay (SNR = 0 dB) (e) DoA (SNR = 0 dB) (f) Doppler (SNR = 0 dB)

(g) Delay (SNR = −5 dB) (h) DoA (SNR = −5 dB) (i) Doppler (SNR = −5 dB)

Fig. 2. The delay, DoA and Doppler patterns at different SNRs. The red represents MUSIC, and the blue represents HNNM.

three parameters at SNR= 10 dB, it gives accurate estimates of
delay and DoA at SNR= 0 dB and −5 dB, but its performance
of Doppler estimation starts to deteriorate at SNR= 0 dB
and becomes only barely acceptable at SNR= −5 dB. By
comparison, the performance of MUSIC in estimating delay
and DoA is nearly as good as that of HNNM at SNR= 10 dB
and 0 dB, but becomes worse at SNR= −5 dB where MUSIC
can only resolve two peaks rather than the ground truth three
peaks. The performance of MUSIC for Doppler estimation is
worse than HNNM under all the tested SNRs: when SNR= −5
dB, MUSIC fails to return meaningful estimations of Doppler.
It can be concluded that HNNM performs better than MUSIC
by exploiting the structure of B.

Table. II compares the parameter estimation results of OMP
with the ground truth at SNR= 10 dB, 0 dB and −5 dB.
An estimation is regarded successful if ϵdelay < 0.02 × Tcp,
ϵDoA < 2◦ and ϵDoppler < fc/c, where ϵ represents the
estimation error. Estimations marked in the blue color are
those above the aforementioned bounds. Compare these to
the estimation errors of HNNM at SNR= −5 dB given by
ϵdelay ≈ 0.0003 × Tcp, ϵDoA ≈ 0.1◦, and ϵDoppler ≈ 0.85fc/c.
Clearly HNNM performs much better than OMP. It is note-
worthy that a further refinement of the discrete grid does not
improve the performance of OMP at low SNR but results in

larger computational complexity.

TABLE II
JOINT DELAY-DOA-DOPPLER ESTIMATION USING OMP

SNR Delay τ
(×Tcp s)

DoA θ
(◦)

Doppler fd
(×fc/c)

Ground
Truth

[0.0371, 0.5724,
0.6243]

[31.5, 85.0,
92.3]

[6, 11, 18]

10 dB [0.04, 0.55, 0.60] [31, 88, 96] [6, 14, 20]
0 dB [0.04, 0.54, 0.60] [31, 88, 96] [6, 14, 20]
-5 dB [0.05, 0.54, 0.60] [31, 89, 96] [5, 14, 20]

We also measure the root mean squared error (RMSE) to
evaluate the estimation accuracy of Delay, DoA and Doppler

as RMSE = 1
K

∑K
k=1

(
1
Nt

∑Nt

nt
(pk − p̃k,nt

)
2
) 1

2

, where Nt, p
and p̃k,nt

denote the number of Monte-Carlo trials, the ground
truth of τ , θ and fd for delay, DoA and Doppler estimation,
and the estimates in the nt-th trial, respectively. As shown in
Fig. 3, the estimation error of these three methods tends to
decrease as the SNR increases. While the proposed HNNM
method has lower estimation error than that of MUSIC and
OMP at all tested SNRs, the delay estimation error of HNNM
is even below 3 × 10−3, indicating that HNNM can recover
all three parameters with good accuracy even at low SNRs.

It is also important to note that the ground truth parameters
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(a) Delay Estimation (b) DoA Estimation (c) Doppler Estimation

Fig. 3. Estimation accuracy for HNNM, MUSIC and OMP at different SNRs.

are chosen in such a way that the minimum gaps between
them fall below the corresponding minimum separation bounds
required by ANM. As shown in [10], [15], in ANM approach
it is necessary to require the minimum gap in delay (∆fτ ) as

2
2N−1 = 0.028, that in DoA (cos(θ)) as 2

2L−1 = 0.15, and that
in Doppler (fdT ′) as 2

2M−1 = 0.22. In our simulations, the
minimum gap in delay is ∆f (0.6243 − 0.5724)Tcp = 0.013,
that in DoA is | cos(92.3◦) − cos(85◦)| = 0.13, that in
Doppler is 2(11 − 6)T ′ = 0.0125. All of them are below
the corresponding minimum separation bounds.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a convex optimization is developed to jointly
estimate delay, DoA and Doppler of back-scattered OFDM
signals. It is based on a low-rank 3-level Hankel matrix
that arises when the number of targets is small. Simulations
demonstrate its robustness to noise and that it can go beyond
the minimum separation required by ANM.

As future directions, it will be beneficial to incorporate
fast SVD of Hankel matrix and speed-ups of ADMM into
the optimization process so that larger system setup can be
handled and faster convergence can be achieved.
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