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Abstract—The spatial-response-variance (SRV) is a widely used
measure in the design of frequency-invariant (FI) beamformers.
Compared with the conventional design approaches for FI-
beamformers, there is no need to pre-specify a fixed desired
beampattern in the SRV-based design counterparts. Therefore,
the SRV-based design approaches enjoy more degrees of freedom
(DOFs) than the conventional ones, which contributes to their
higher performance in the FI-beamformer design. In this paper,
we introduce a weighted SRV measure, which is a generalized
version of the SRV, and then propose a weighted-SRV-based FI-
beamformer design approach by exploiting the DOFs offered
by the weighting coefficients of the weighted SRV. It shows
that the FI performance of the resultant beamformers can be
further improved compared with the existing SRV-based design.
Particularly, array response can be precisely controlled, including
mainlobe ripple, sidelobe level and notch depth. Moreover, the
weighted-SRV-based design can operate over a wider frequency
range, while the SRV-based counterpart may fail.

Index Terms—Frequency invariant beamforming, wideband
beamforming, spatial response variance

I. INTRODUCTION

Wideband beamformers have found a wide range of ap-
plications in radar, sonar, and audio systems, etc. [1]. It is
known that the mainlobe width of conventional wideband
beamformers, such as the delay-and-sum beamformers, de-
creases with frequency. As a result, the signal of interest
(SOI) processed by the conventional wideband beamformers
will be lowpass filtered when the steering direction of the
beamformers deviates from the direction of arrival of the SOI,
and hence will lead to distortion of the SOI at the beamformer
output. To deal with the problem, many efforts have been made
to design the frequency-invariant (FI) beamformers which can
achieve a constant mainlobe width [2]–[15].

In the design of FI-beamformers, there usually requires a
user-predefined fixed desired beampattern [2]. However, the
disadvantage is that it results in the loss of degrees of freedom
(DOFs) caused by the arbitrarily-predefined fixed desired
beampattern, and thus may sacrifice the FI performance of
the synthesized beampatterns. To circumvent the problem, the
spatial-response-variance (SRV) measure [16] has drawn much
interest in the design of FI-beamformers, which does not need
to pre-specify a fixed desired beampattern and hence enjoys
more DOFs in the FI-beamformer design. For example, in
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[17] and [18], a least-squares (LS) approach using the SRV
measure for the FI-beamformer design was presented, which
is a general approach and can be applied to various array
configurations. In [19] and [20], the SRV measure was used
in the design of sparse sensor arrays with FI beampatterns.

In this paper, we first introduce a weighted SRV measure
by generalizing the concept of the SRV, and then develop an
FI-beamformer design approach based on the weighted SRV.
Compared to the existing related works, the main contributions
of the paper are summarized as follows:

• A weighted SRV is proposed to design the FI beam-
formers, and the existing SRV widely used in the current
literature can be seen as a special case of the weighted
SRV. Accordingly, our proposed design can be regarded
as a generalized version of the existing SRV based design.

• By exploiting the weighting functions in the weighted
SRV, the proposed design approach offers two advan-
tages. One is that the array response can be precisely
controlled, including the mainlobe ripple, sidelobe level
and notch depth. In contrast, the existing SRV-based
design approaches have no such ability for array response
control. And the other advantage is that we can design
the FI beamformers with a wider frequency band, while
the conventional SRV-based counterpart may fail.

• Regarding the optimization problem based on the weight-
ed SRV, it is rather challenging due to its nonlinear and
nonconvex nature. To deal with it, we propose a solution
by extending our recent work [22], where only narrow-
band case is considered. Nevertheless, the extension is not
trivial. The algorithm in [22] is not directly applicable to
solve the present problem, because the previous algorithm
assumes a fixed desired beampattern, while in the present
work the desired beampattern is not fixed and instead
depends on the beamformer weights.

II. SIGNAL MODEL

Consider a farfield wideband beamformer with the general
filter-and-sum structure for an M -element linear sensor array,
where there are L filter taps attached to each sensor. (We would
like to point out that, although we consider a linear array, our
proposed method is applicable to arbitrary array geometries.)
For a plane-wave signal with the normalized angular frequency
ω and angle of arrival θ (defined anticlockwise relative to array
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axis), the array response of the beamformer, or beampattern,
can be expressed as

P (θ, ω) =

M−1∑
m=0

L−1∑
l=0

w†
m,le

−jω(τm(θ)fs+l) (1)

where wm,l denotes the beamformer weight at the lth tap of the
mth sensor, (·)† represents complex conjugate, j =

√
−1, fs is

the sampling frequency, and τm(θ) stands for the propagation
time delay between the mth sensor and a reference point.

Using a vector notation, (1) can be rewritten as

P (θ, ω) = wHs(θ, ω) (2)

where [·]H denotes the Hermitian transpose, the beamformer
weight vector w is defined as

w = [w0,0, · · ·, wM−1,0, · · ·, w0,L−1 · · ·, wM−1,L−1]
T, (3)

and the steering vector s(θ, ω) is given by

s(θ, ω) = s1(ω)⊗ s2(θ, ω) (4)

where [·]T denotes the transpose, ⊗ represents the Kronecker
product, s1(ω) =

[
1, e−jω, · · · , e−jω(L−1)

]T
and s2(θ, ω) =[

1, e−jωτ1(θ)fs , · · · , e−jωτM−1(θ)fs
]T

.

III. WEIGHTED SRV

The SRV is defined as the Euclidean distance between the
beampattern at a fixed reference frequency and those at all the
other operating frequencies over the angle range of interest
[17]. In many scenarios, the FI property is only needed to be
considered in the mainlobe region. Mathematically, the SRV
measure can be expressed as

JSRV =
∑
ω∈Ω

∑
θ∈ΘML

|wHs(θ, ω)− Pref(θ, ω)|2 (5)

where Pref(θ, ω) = wHs(θ, ωref) is the reference beampattern,
Ω is the frequency range of interest, ΘML is the mainlobe
region, and ωref is a reference frequency within Ω.

Based on (5), we propose a weighted SRV measure:

JWSRV =
∑
ω∈Ω

∑
θ∈ΘML

FML(θ, ω)
∣∣wHs(θ, ω)−Pref(θ, ω)

∣∣2 (6)

where FML(θ, ω) > 0 denotes the weighting coefficients.
The proposed weighted SRV can be seen as a generalized

version of the SRV. Specifically, when FML(θ, ω) = 1, the
weighted SRV degenerates into the SRV.

IV. PROPOSED FI-BEAMFORMER DESIGN APPROACH
BASED ON WEIGHTED SRV

A. Problem Formulation

Similar to [17], the FI-beamformer design using the weight-
ed SRV can be cast as a constrained LS problem:

min
w

JWSRV +
∑
ω∈Ω

∑
θ∈ΘSL

FSL(θ, ω)
∣∣wHs(θ, ω)

∣∣2 (7a)

s.t. Pref(θs, ωref) = 1 (7b)

where ΘSL denotes the sidelobe region, FSL(θ, ω) is the
nonnegative weighting coefficients in ΘSL, and θs is the look
direction. The second term in (7a) is to control the sidelobe
level, and the constraint (7b) is to avoid trivial solution.

With (7), our problem can be described as: Refine the
solution of (7) by tuning FML(θ, ω) and FSL(θ, ω) such that{ ||P (θ, ω)| − |Pref(θ, ω)|| ≤ εML , (θ, ω) ∈ (ΘML,Ω); (8a)

|P (θ, ω)| ≤ ΓSL(θ, ω), (θ, ω) ∈ (ΘSL ,Ω) (8b)

where ε
ML

is the pre-specified mainlobe ripple and Γ
SL
(θ, ω)

is the sidelobe level.

B. Solution to the Proposed Design Problem

Note that the optimization problem (7) with the constraints
(8) is nonlinear and nonconvex, and the conventional optimiza-
tion techniques such as convex programming are not suitable
to tackle this kind of problem. In the following, we present
an iterative algorithm to solve the problem.

1) Initialization: First, we initialize the weighting coeffi-
cients as FML(θ, ω) , FML,0(θ, ω) = 1 and FSL(θ, ω) ,
FSL,0(θ, ω) = 1. The resultant solution to (7) is denoted as
w∗. Accordingly, the reference beampattern can be expressed
as Pref(θ, ω) = wH

∗ s(θ, ωref).
Note that the solution of the SRV-based design, i.e. w∗,

generally does not satisfy the design specification (8). Hence,
we next develop an iterative procedure to guarantee that
(8) holds by further exploiting the DOFs provided by the
weighting coefficients. To this end, the initial beamformer
weight vector, denoted as w0, can be obtained by solving the
following LS problem:

min
w0

∑
ω∈Ω

∑
θ∈ΘML

|wH
0 s(θ, ω)− Pref(θ, ω)|2

+
∑
ω∈Ω

∑
θ∈ΘSL

|wH
0 s(θ, ω)|

2
. (9)

The solution that minimizes (9) is given by

w0 = G−1
0 a0 (10)

where

G0 =
∑
ω∈Ω

∑
θ∈ΘML∪ΘSL

s(θ, ω)sH(θ, ω) (11)

a0 =
∑
ω∈Ω

∑
θ∈ΘML

P †
ref(θ, ω)s(θ, ω). (12)

2) Iteration Steps: At each iteration, we aim to tune the
weighting coefficients FML and FSL at the angle-frequency
point where the design specification (8) is most severely
violated, i.e., where the beampattern has the largest deviation
from the design specification. The iteration steps continue until
(8) is finally satisfied.

For the kth (k ≥ 1) iteration, we first search for the angle-
frequency point, denoted as (θ′, ω′), that violates the design
specification (8) most severely, i.e.,

(θ′, ω′) = arg
(θ,ω)

emax (13)
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where

emax=max

{
max

(θ,ω)∈(ΘML,Ω)
||Pk−1(θ, ω)|−|Pref,k−1(θ, ω)|| ,

max
(θ,ω)∈(ΘSL,Ω)

|Pk−1(θ, ω)|−ΓSL(θ, ω)+εML

}
(14)

with Pk−1(θ, ω) = wH
k−1s(θ, ω) and Pref,k−1(θ, ω) =

wH
k−1s(θ, ωref).
Note that, at the kth iteration, we only focus on the

adjustment at one point, i.e., (θ′, ω′). However, the reference
beampattern at (θ′, ω′), i.e., Pref,k(θ

′, ω′) = wH
k s(θ

′, ωref), is
not available since we have no access to wk at the kth iteration.
To get around the problem, we use the reference beampattern
at the (k − 1)th iteration instead to approximate the current
reference beampattern. Accordingly, the resultant reference
beampattern, denoted as P̃ref,k(θ, ω), can be expressed as

• If (θ′, ω′) ̸= (θs, ωref), then

P̃ref,k(θ, ω) =

{
Pref,k−1(θ, ω), (θ, ω) = (θ′, ω′); (15a)

P̃ref,k−1(θ, ω), otherwise. (15b)
• Otherwise, we have

P̃ref,k(θ, ω) =

{
1, (θ, ω) = (θ′, ω′); (16a)

P̃ref,k−1(θ, ω), otherwise (16b)

where P̃ref,0(θ, ω) = wH
∗ s(θ, ωref).

With P̃ref,k(θ, ω), now the problem becomes to adjust
F

ML,k
(θ′, ω′) and F

SL,k
(θ′, ω′) such that{

||Pk(θ
′, ω′)|−|P̃ref,k(θ

′, ω′)||≤εML , (θ
′, ω′)∈(ΘML,Ω); (17a)

|Pk(θ
′, ω′)|≤ ΓSL(θ

′, ω′), (θ′, ω′)∈(ΘSL,Ω). (17b)

To guarantee that (17) holds, it can be verified that it suffices
to require:{
||Pk(θ

′, ω′)|2−|P̃ref,k(θ
′, ω′)|2|≤ε′

ML
, (θ′, ω′)∈(ΘML,Ω);(18a)

|Pk(θ
′, ω′)|2≤ Γ2

SL
(θ′, ω′), (θ′, ω′)∈(ΘSL,Ω) (18b)

where ε′
ML

= |ε2
ML

− 2εML |P̃ref,k(θ
′, ω′)||. To facilitate the

analysis, in the following we will consider (18) as an alterna-
tive form of (17).

The beamformer weight vector at the kth iteration, wk, is
given by solving the following LS problem:

min
wk

∑
ω∈Ω

∑
θ∈ΘML

F
ML,k

(θ, ω)|wH
k s(θ, ω)− P̃ref,k(θ, ω)|2

+
∑
ω∈Ω

∑
θ∈ΘSL

F
SL,k

(θ, ω)|wH
k s(θ, ω)|

2
. (19)

The solution to (19) can be expressed as

wk = G−1
k ak (20)

where

Gk =
∑
ω∈Ω

∑
θ∈ΘML

F
ML,k

(θ, ω)s(θ, ω)sH(θ, ω)

+
∑
ω∈Ω

∑
θ∈ΘSL

F
SL,k

(θ, ω)s(θ, ω)sH(θ, ω) (21)

ak =
∑
ω∈Ω

∑
θ∈ΘML

F
ML,k

(θ, ω)P̃ †
ref,k(θ, ω)s(θ, ω). (22)

Suppose that{
F

ML,k
(θ′, ω′) = F

ML,k−1
(θ′, ω′) + ∆F

ML
(23a)

F
SL,k

(θ′, ω′) = F
SL,k−1

(θ′, ω′) + ∆F
SL

(23b)

where ∆F
ML

and ∆F
SL

is the required adjustment in order to
ensure that (18) holds. Then, by (21) and (23), we have

Gk = Gk−1 +∆F s(θ′, ω′)sH(θ′, ω′) (24)

where

∆F =

{
∆F

ML
, (θ′, ω′) ∈ (ΘML,Ω);

∆F
SL

, (θ′, ω′) ∈ (ΘSL,Ω).
(25)

Further applying the Woodbury lemma [21] to (24) yields

G−1
k = G−1

k−1 −
∆FG

−1
k−1s(θ

′, ω′) sH(θ′, ω′)G−1
k−1

1 + ∆F sH(θ′, ω′)G−1
k−1s(θ

′, ω′)
. (26)

Moreover, by (22) and (23) we can obtain

ak=


ak−1+∆F

ML
P̃ †
ref,k(θ

′, ω′)s(θ′, ω′)+F
ML,k−1

(θ′, ω′)

×s(θ′, ω′)[P̃ †
ref,k(θ

′, ω′)− P̃ †
ref,k−1(θ

′, ω′)],

(θ′, ω′) ∈ (ΘML,Ω);
ak−1, (θ′, ω′) ∈ (ΘSL,Ω).

(27)
With (20), (26) and (27), we can get

wk = wk−1 +∆w (28)

where

∆w =



[P̃ †
ref,k(θ

′, ω′)−P †
k−1(θ

′, ω′)∆F
ML

+F
ML,k−1

(θ′, ω′)

×(P̃ †
ref,k(θ

′, ω′)− P̃ †
ref,k−1(θ

′, ω′))]

× G−1
k−1s(θ

′,ω′)

1+∆F
ML

sH(θ′,ω′)G−1
k−1s(θ

′,ω′)
, (θ′, ω′) ∈ (ΘML,Ω);

−∆F
SL

G−1
k−1s(θ

′,ω′)P †
k−1(θ

′,ω′)

1+∆F
SL

sH(θ′,ω′)G−1
k−1s(θ

′,ω′)
, (θ′, ω′) ∈ (ΘSL,Ω).

(29)
Next, the problem is reduced to find ∆F

ML
and ∆F

SL
.

Apparently, to ensure that (18) holds, it suffices to consider
that ∆F

ML
and ∆F

SL
satisfy:{

||Pk(θ
′, ω′)|2−|P̃ref,k(θ

′, ω′)|2|=ε′
ML

, (θ′, ω′)∈(ΘML,Ω);(30a)

|Pk(θ
′, ω′)|2= Γ2

SL
(θ′, ω′), (θ′, ω′)∈(ΘSL,Ω).(30b)

Then, solving (30) for ∆F
ML

and ∆F
SL

yields:

• For (θ′, ω′) ∈ (ΘML,Ω), there exist at least one positive
real solution for ∆FML satisfying (30a):
∆FML,1 =

−λ−
√
λ2 − (|P̃ref,k(θ′, ω′)|2 − ρ′)γ2σ

(|P̃ref,k(θ′, ω′)|2 − ρ′)γ2
(31a)

∆FML,2 =
−λ+

√
λ2 − (|P̃ref,k(θ′, ω′)|2 − ρ′)γ2σ

(|P̃ref,k(θ′, ω′)|2 − ρ′)γ2
(31b)
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Algorithm 1: Proposed FI-Beamformer Design Approach

1 Input: θs, ωref , εML , ΓSL , and the discretized
angle-frequency regions of interest ΘML, ΘSL and Ω.

2 Initialize FML(θ, ω) = FSL(θ, ω) = 1, and calculate the
initial reference beampattern Pref(θ, ω) = wH

∗ s(θ, ωref)
by solving (7).

3 Compute w0, G0 and a0 by (10), (11) and (12).
4 Set k = 1 and then compute emax by (14).
5 while emax > εML do
6 Search for (θ′, ω′) by (13).
7 Compute P̃ref,k(θ

′, ω′) by (15) or (16).
8 If (θ′, ω′) ∈ (ΘML,Ω), calculate ∆F

ML
by (31);

otherwise, i.e., (θ′, ω′) ∈ (ΘSL,Ω), calculate ∆F
SL

by (32).
9 Update wk, Gk and ak by (28), (24) and (27).

10 Check emax by (14) , and set k = k + 1.
11 end

where

λ =(Re[Pk−1(θ
′, ω′)P̃ †

ref,k(θ
′, ω′)]− ρ′)γ + ξ

σ =(F
ML,k−1

(θ′, ω′)|η|γ)2 + |Pk−1(θ
′, ω′)|2 − ρ′

+ 2F
ML,k−1

(θ′, ω′)Re[Pk−1(θ
′, ω′)ηγ]

γ =sH(θ′, ω′)G−1
k−1s(θ

′, ω′)

ρ′ =


|P̃ref,k(θ

′, ω′)|2 + ε′
ML

, β > 0 or (β = 0,

|Pk−1(θ
′, ω′)| > |P̃ref,k(θ

′, ω′)|)
|P̃ref,k(θ

′, ω′)|2 − ε′
ML

, β < 0 or (β = 0,

|Pk−1(θ
′, ω′)| < |P̃ref,k(θ

′, ω′)|)
ξ =γ2F

ML,k−1
(θ′, ω′)Re[P̃ref,k(θ

′, ω′)η]

η =P̃ †
ref,k(θ

′, ω′)− P̃ †
ref,k−1(θ

′, ω′)

β =(Re[Pk−1(θ
′, ω′)P̃ †

ref,k(θ
′, ω′)]−|P̃ref,k(θ′, ω′)|2)

× γ + ξ

with Re[·] representing the real part. Note that, in the
case of two feasible solutions ∆FML,1 and ∆FML,2 , we
will choose the one with the smaller cost function value
(19) as the preferable solution.

• For (θ′, ω′) ∈ (ΘSL,Ω), it follows that when

∆F
SL

=
|Pk−1(θ

′, ω′)|/ΓSL(θ
′, ω′)− 1

sH(θ′, ω′)G−1
k−1s(θ

′, ω′)
, (32)

(30b) holds.
The derivations of (31) and (32) can be obtained by extending
our recent work in [22], and thus omitted here.

To summarize, the steps of the proposed FI-Beamformer
design approach are shown in Algorithm 1.

V. DESIGN EXAMPLES

This section shows some simulation results to compare the
proposed design with the existing SRV-based counterpart [17]
(i.e., via solving Eq. (21) in [17]). Note that the proposed

design can explicitly control the sidelobe level. In the SRV-
based design, the sidelobe level is implicitly controlled via
a regularization term in the cost function. To facilitate the
comparison, we have reformulated the SRV-based design using
an explicit sidelobe level constraint, i.e.,

min
w

∑
θ∈ΘML

∑
ω∈Ω

|wHs(θ, ω)−wHs(θ, ωref)|2 (33a)

s.t. wHs(θs, ωref) = 1 (33b)

|wHs(θ, ω)| ≤ ΓSL(θ, ω), (θ, ω) ∈ (ΘSL ,Ω). (33c)

Following [17], we consider a 10-sensor uniform linear array
with each sensor followed by a 20-tap FIR filter. The inter-
sensor spacing is half the wavelength corresponding to the
maximum normalized frequency π.

A. Example 1

In the first example, the design specifications are: 1) The
mainlobe region ΘML = [60◦, 120◦] and the sidelobe region
ΘSL = [0◦, 50◦]∪[130◦, 180◦]; 2) The look direction θs = 90◦,
and the frequency range Ω = [0.25π, 0.75π] with the reference
frequency ωref = 0.7π; 3) The mainlobe ripple εML = 0.3 dB,
and the sidelobe level ΓSL = −30 dB.

The synthesized beampatterns of the weighted-SRV- and
SRV-based designs are shown in Figs. 1(a) and 1(b), respec-
tively, where the mainlobe ripples are shown in the insets.
As can be seen, although the SRV-based design can achieve
good FI performance, its mainlobe ripple (0.4758 dB) slightly
violates the design specification, i.e., 0.3 dB. In comparison,
the proposed design can achieve better FI performance, with its
mainlobe ripple (0.2369 dB) within the pre-specified threshold.
Moreover, the proposed design can also achieve a lower
sidelobe level of −37.8615 dB.
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Fig. 1. Synthesized beampatterns of Example 1 with the frequency range
[0.25π, 0.75π]: (a) weighted-SRV and (b) SRV, where the mainlobe ripples
are shown in the insets.

B. Example 2

In the second example, we demonstrate the capability
of the weighted-SRV-based approach in the design of FI-
beamformers with non-uniform sidelobe levels. The design
specifications are same as those in Example 1, except that
there is a notch region [15◦, 35◦] with a depth of −45 dB.

Figs. 2(a) and 2(b) plot the synthesized beampatterns of
the weighted-SRV- and SRV-based designs, respectively. We
can see from Fig. 2 that, with the non-uniform sidelobe
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level constraint, the weighted-SRV-based design also performs
better than its SRV-based counterpart in terms of the FI
performance. The mainlobe ripple of the weighted SRV-based
design is 0.2876 dB, which is well below the pre-specified
threshold, 0.3 dB. In comparison, the mainlobe ripple of the
SRV-based design is 2.6623 dB, which greatly violates the
design specification.
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Fig. 2. Synthesized beampatterns of Example 2 with a frequency range
[0.25π, 0.75π] and a notch in the region [15◦, 35◦]: (a) weighted-SRV, (b)
SRV, where the mainlobe ripples are shown in the insets.

C. Example 3

In the third example, we increase the frequency band to
Ω = [0.125π, π]. And the remaining design specifications are
same as in Example l. Figs. 3(a) and 3(b) show, respectively,
the synthesized beampatterns of the weighted-SRV- and SRV-
based designs. We can see clearly that the SRV-based design
fails to work with a wider frequency range, with its mainlobe
ripple up to 17.4831 dB. In contrast, our proposed design
performs well with all the design specifications being satisfied,
and the mainlobe ripple is just 0.2989 dB.
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Fig. 3. Synthesized beampatterns of Example 3 with the frequency range
[0.125π, π]: (a) weighted-SRV and (b) SRV, where the mainlobe ripples are
shown in the insets.

VI. CONCLUSION

In this paper, we have proposed a weighted-SRV-based
approach for the design of FI beamformers. Compared with
the existing SRV-based design, the advantage of the proposed
approach lies in that it has fully utilized the DOFs offered by
the weighting coefficients of the weighted SRV measure. It has
shown that the weighted-SRV-based design can achieve better
FI performance than the SRV-based design. Particularly, array
response can be precisely controlled by the proposed design.
Moreover, the proposed design is able to be applicable for a
wider frequency range, while the SRV-based design may fail.
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