
Improved Tracking for Distributed Signal Fusion
Optimization in a Fully-Connected Wireless Sensor

Network
Cem Ates Musluoglu, Marc Moonen and Alexander Bertrand

KU Leuven, Department of Electrical Engineering (ESAT),
STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Belgium

{cemates.musluoglu, marc.moonen, alexander.bertrand}@esat.kuleuven.be

Abstract—The distributed adaptive signal fusion (DASF) algo-
rithm is a generic algorithm that can be used to solve various
spatial signal and feature fusion optimization problems in a
distributed setting such as a wireless sensor network. Examples
include principal component analysis, adaptive beamforming,
and source separation problems. While the DASF algorithm
adaptively learns the relevant second order statistics from the
collected sensor data, accuracy problems can arise if the spatial
covariance structure of the signals is rapidly changing. In this
paper, we propose a method to improve the tracking or conver-
gence speed of the DASF algorithm in a fully-connected sensor
network with a broadcast communication protocol. While the
improved tracking increases communication cost, we demonstrate
that this tradeoff is efficient in the sense that an L-fold increase
in bandwidth results in an R times faster convergence with R
>> L.

Index Terms—Distributed Signal Processing, Distributed Op-
timization, Distributed Spatial Filtering, Feature Fusion.

I. INTRODUCTION

A wireless sensor network (WSN) consists of a collection
of sensor nodes which are spread out over an area, where
each node is equipped with one or more sensors, a processing
unit, and a wireless radio. Instead of transferring all the raw
sensor data to a central fusion center, a distributed processing
of the sensor data is often preferred in terms of bandwidth
efficiency. The distributed adaptive signal fusion (DASF) algo-
rithm described in [1] allows to solve a variety of spatial signal
or feature fusion optimization problems in such a distributed
context. In contrast to various other distributed algorithms [2]–
[6], distributed signal fusion optimization (DSFO) problems
of interest do not have a separable objective nor a shared
optimization variable across nodes. Instead, the objective and
the constraint functions consist of spatial filtering operations
given by XTy(t), where X is the optimization variable and
y(t) is a multi-channel signal containing all the sensor signals
of the WSN. In the DSFO setting, each node k in the WSN
measures its own signal yk and has its own local variable Xk

such that XTy(t) =
∑

kX
T
k yk(t). This type of partitioning

has also been studied under the name of feature partitioning
or distributed features in previous works, such as [7]–[10].

In practice, the iterations of the DASF algorithm are spread
over time, i.e., over different batches of signal observations
(samples), thereby exploiting the stationarity of the underlying

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802895). The authors also acknowledge the
financial support of the FWO (Research Foundation Flanders) for project
G.0A49.18N, and the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme.

signals. This results in an adaptive algorithm that is able to
track the changes in the signal statistics. However, this is
a valid argument as long as the changes in the statistical
parameters of y (e.g., their spatial covariance matrix) are
slower than the algorithm convergence rate, which is not
always the case in practice. In this paper, we propose a
modified scheme for the DASF algorithm in a fully-connected
WSN, which improves the tracking speed by re-using and re-
transmitting previously measured observations in a bandwidth-
efficient way, avoiding the centralization of the full data
measured at each node. Although this leads to additional
communication costs, we show that the resulting tradeoff
can be made efficient by synergistically combining the data
exchange protocol with the computations within the DASF
algorithm. In the last section of this paper, we demonstrate the
improvements made by the proposed method on two different
algorithms from the DASF family.

II. REVIEW OF THE DASF FRAMEWORK

Consider a WSN with K nodes given in the set
K = {1, . . . ,K}, where each node k measures its own
Mk−channel signal yk. Let

y(t) = [yT
1 (t), . . . ,y

T
K(t)]T (1)

be the stacked vector containing all the sensor signals, where
y(t) ∈ RM with M =

∑
kMk. The signal y is assumed to be

short-term stationary and ergodic. The goal is now to learn a
network-wide signal fusion or spatial filter X ∈ RM×Q such
that the Q−channel output signal XTy(t) is optimal in some
sense. To this end, each node is responsible for optimizing its
corresponding part of X , based on the per-node partitioning:

X = [XT
1 , . . . , X

T
K]T ∈ RM×Q. (2)

The generic DSFO problem can be written in the form

P : minimize
X

ϕ
(
XTy(t), XTB

)
subject to ηj

(
XTy(t), XTB

)
≤ 0 ∀j ∈ I,

ηj
(
XTy(t), XTB

)
= 0 ∀j ∈ E ,

(3)

where ϕ is the objective and ηj’s are the constraint func-
tions respectively. The sets I and E contain the indices j
representing inequality and equality constraints respectively.
A few practical examples of spatial filtering problems that fit
in this framework are given in Table I (we refer to [1] for

1836ISBN: 978-1-6654-6798-8 EUSIPCO 2022

TABLE I: Examples of DSFO problems

P minϕ Constraints
LCMV

[11], [12] minx E[|xTy(t)|2] xTB = fT

EVD [13] minX −E[||XTy(t)||2] XTX = IQ

CCA [14] min(X,W)
−E[tr(XTy(t)vT (t)W)]

E[XTy(t)yT (t)X] = IQ
E[WTv(t)vT (t)W] = IQ

a more extensive list). The notation in (3) emphasizes that
the optimization variable X and the signal y(t) exclusively
appear in the form XTy(t) in the considered DSFO problems.
The matrix X can also appear in linear forms XTB where
B is an a-priori known deterministic matrix (e.g., linearly
constrained minimum variance beamforming (LCMV) and
eigenvalue decomposition (EVD) with B = IM in Table
I). Although not represented for conciseness, the considered
DSFO problems can also have more than one variable, as in
the canonical correlation analysis (CCA) example in Table I.
The rows of B are partitioned in a similar way to y in (1),
where each node k only has access to the block-row Bk.

In practice, y is a stochastic signal, therefore ϕ and ηj’s are
functions of the statistical parameters of y and hence contain
expectation operators E[·], as can be seen in the examples
given in Table I, which we have omitted in (3). The statistical
properties of y can be estimated using a window, or batch, of
N time samples {y(t)}N−1t=0 , using the short-term stationarity
and ergodicity of y, where N is sufficiently large. However,
in a distributed setting, communicating yk’s between nodes to
construct y is costly. Note that in practice, N is generally
much larger than the number of columns of B, therefore
the transmission of observations of y contribute to the main
communication cost. The DASF algorithm solves this issue
and guarantees convergence to an optimal solution X∗ of the
problem by requiring each node k to communicate only a
linearly compressed version of yk, instead of yk itself. While
the DASF algorithm can be applied in any connected network
topology [1], we specifically focus here on the case where the
network is fully-connected, i.e., a signal that is broadcast by
any node can be received by all other nodes in the network.

Consider a fully-connected WSN, where each node k col-
lects a batch of N samples of the Mk−channel signal yk,
denoted as {yk(t)}(i+1)N−1

t=iN where i is the iteration index of
the DASF algorithm. Note that the N sample batch changes
with each iteration. Additionally, each node k has an esti-
mation Xi

k of their local variable Xk, which is part of the
network-wide X as defined in the partitioning (2). While Xi

k

is part of the optimization variable X , it is also used by the
DASF algorithm to compress the Mk−channel signal into a
Q−channel signal, thereby reducing the communication cost
(note that many practical examples have Q = 1). A similar
compression is done for Bk and the compressed signals and
deterministic matrices are then given by

ŷi
k(t) , XiT

k yk(t), B̂
i
k , XiT

k Bk. (4)

At each iteration, one node (say node q) acts as the “updating
node”, where the updating node changes in each iteration.

Each k ∈ K\{q} sends {ŷi
k(t) = XiT

k yk(t)}(i+1)N−1
t=iN and

B̂i
k to node q at iteration i. We define the locally available

signal at node q after receiving the compressed signals ŷi
k

from the other nodes as

ỹi
q(t) = [yT

q (t), ŷ
iT
1 (t), . . . , ŷiT

q−1(t), ŷ
iT
q+1(t), . . . , ŷ

iT
K (t)]T ,

(5)
which corresponds to stacking node q’s own signal with the
compressed signals it receives, while B̃i

q is defined similarly.
The mechanism of the DASF algorithm is to solve a com-
pressed version of the global problem (3) at the updating node
by using the locally available signal ỹi

q and matrix B̃i
q . We

define the local variable at node q as

X̃q = [XT
q , G

T
1,q, . . . , G

T
q−1,q, G

T
q+1,q, . . . , G

T
K,q]

T , (6)

where Xq is Mq×Q and every Gk,q is Q×Q. The purpose of
X̃q is to be the local fusion matrix for ỹi

q and B̃i
q , analogous

to X being the network-wide fusion matrix for y and B. We
write

X̃T
q ỹ

i
q(t) = XT

q yq(t) +
∑

k∈K\{q}

GT
k,qŷ

i
k(t) (7)

= XT
q yq(t) +

∑
k∈K\{q}

(Xi
kGk,q)

Tyk(t) (8)

(a similar expression holds for X̃T
q B̃

i
q), such that the global

variable X is parameterized as

X = [(Xi
1G1,q)

T , . . . , (Xi
q−1Gq−1,q)

T ,

XT
q , (X

i
q+1Gq+1,q)

T , . . . , (Xi
KGK,q)

T]T .
(9)

In this parameterization, Xq corresponds to the filter applied to
node q’s signal yq and matrix Bq , while the Gk,q’s correspond
to the filters applied to the compressed ŷi

k’s and B̂i
k’s node q

receives from nodes k 6= q. We define the parameterized local
problem at node q as

P̃i
q : minimize

X̃q

ϕ
(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
subject to ηj

(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
≤ 0 ∀j ∈ I,

ηj

(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
= 0 ∀j ∈ E .

(10)

Note the similarity between (10) and (3), yet the problems
are not equal, as the data is not the same, namely (ỹi

q, B̃
i
q)

and (y, B) respectively. We define the solution of the local
problem (10) at node q and iteration i as

X̃i+1
q , argmin P̃i

q, (11)

where X̃i+1
q is partitioned into Xi+1

q and Gi+1
k,q ’s, k 6= q,

as in (6). If the solution of (11) is not unique, node q
chooses the X̃q for which the distance between its consec-
utive local estimators ||X̃i+1

q − X̃i
q||F is minimized, where

X̃i
q , [XiT

q , IQ, . . . , IQ]
T . Based on the parameterization in

(9), the local variables Xk are updated as

Xi+1
k =

{
Xi+1

q if k = q

Xi
kG

i+1
k,q if k 6= q

, (12)

1837

Algorithm 1: DASF in a Fully-Connected Network [1]

X0 initialized randomly, i← 0.
repeat

Choose the updating node as q ← (i mod K) + 1.
1) Every node k collects {yk(t)}(i+1)N−1

t=iN ,
compresses it using (4) to obtain {ŷi

k(t)}
(i+1)N−1
t=iN

and transmits it to node q. Bk is also compressed
into B̂i

k as in (4) and transmitted to node q.
at Node q do

2a) X̃i+1
q ← argmin P̃i

q .
If the solution of (10) is not unique, select the

solution which minimizes ||X̃i+1
q − X̃i

q||F .
2b) Partition X̃i+1

q as in (6).
2c) Transmit Gi+1

k,q to node k for every k 6= q.
end
3) Every node updates Xi+1

k according to (12).
i← i+ 1

to have an estimation Xi+1 of the global variable X at
the end of iteration i, where Xi+1 is obtained by stacking
Xi+1

k ’s, as defined in (2). Since each node k has only access
to its own local variable Xk, the updating node q needs to
communicate the newly computed Gi+1

k,q ’s to nodes k 6= q
so that they can update their variable Xk according to (12).
The DASF algorithm then chooses another node to be the
updating one (for the next batch of N samples) and the process
is repeated until convergence. From (7)-(9), we also see that
the network-wide output XTy(t) for the batch of N samples
used at iteration i can be computed locally at node q as
XiTy(t) = X̃iT

q ỹi
q(t). Algorithm 1 summarizes the steps of

the DASF algorithm as discussed in this section. Sufficient
conditions for the convergence and optimality of this algorithm
can be found in [1].

III. EFFICIENT COMMUNICATION FOR IMPROVED
TRACKING

In the DASF algorithm described in Section II, each batch
of N samples of yk is used in only one iteration i, i.e.,
the batch {yk(t)}(i+1)N−1

t=iN at iteration i. This might lead
to a slow convergence/tracking speed, in particular for large
networks (i.e., large K). To see this, note that it takes at least
K iterations before each Xk has been updated once, which
happens only after sample time t = KN (i.e., K batches of
N samples). In order to improve the tracking performance,
one could perform R > 1 iterations per N−sample batch.
However, a straightforward realization of such a scheme
would result in an R−fold increase of the communication
cost. We will show that a specific re-transmission scheme
which exploits the broadcast nature of the transmissions, and
which synergistically combines the re-transmissions with the
computations within the DASF algorithm, can actually make
this tracking-vs-bandwidth tradeoff very efficient in the sense
that the bandwidth increase is smaller than R.

Let us define Tm , {(m−1)N, . . . ,mN−1}, where m is a
strictly positive integer, and let R be the number of iterations

over which the signal batch {y(t)}t∈Tm will be used. This
means that the m−th batch {y(t)}t∈Tm will be used over
the iterations Im , {(m − 1)R, . . . ,mR − 1} of the DASF
algorithm, hence m = d(i + 1)/Re. In Algorithm 1, we had
R = 1 and therefore m = i + 1 at every iteration, i.e., the
batch index m and iteration i always update at the same pace.
If R > 1, each new batch of N samples will lead to mul-
tiple DASF iterations, leading to faster convergence/tracking
properties, i.e., more nodes can update per batch.

For R > 1, let us first consider a straightforward approach
where we apply the steps of Algorithm 1 while re-using the
same batch R times. As XiT

k yk is a Q−channel signal, each
broadcast has a communication cost in O(NQ) per node,
where O represents the Landau notation, and O(NQK) over
the full network. This approach would then cost O(NQKR)
per batch since each node would have to re-compress and re-
transmit the same batch of samples R times. In this case, the
communication cost increases linearly with R.

In the remaining of this section, we propose a more ef-
ficient scheme, which results in a much smaller and more
scalable increase in communication cost. For each new batch
{yk(t)}t∈Tm , i.e., for each increment of m, all nodes k first
broadcast the compressed data batch {XiT

k yk(t)}t∈Tm to the
entire network of nodes, where i is the index corresponding
to the first iteration where this new batch of samples is used.
Assuming a broadcast communication protocol, this requires
only one transmission per node, which is the same as in a
single iteration of Algorithm 1. Every node in the network
then has access to

{ŷi
k(t)}t∈Tm = {XiT

k yk(t)}t∈Tm , ∀k. (13)

B̂i
k = XiT

k Bk is also broadcast initially. After this initial
broadcast, the first updating node (say node q) solves Problem
(10), obtaining X̃i+1

q . Partitioning X̃i+1
q as in (6) gives a

new Xi+1
q and matrices Gi+1

k,q , to be used in (12), i.e.,
Xi+1

k = Xi
kG

i+1
k,q , ∀k ∈ K\{q}. For the other nodes to be

aware of these changes, node q broadcasts its compressed
signal samples and deterministic matrix obtained using its new
estimation Xi+1

q , as well as the matrices Gi+1
k,q , i.e., node q

broadcasts

{ŷi+1
q (t) = X(i+1)T

q yq(t)}t∈Tm ,
B̂i+1

q = X(i+1)T
q Bq and {Gi+1

k,q }k 6=q,
(14)

so that the next updating node has access to the batch of
samples of node q as well as B̂i+1

q , this time compressed
by the new Xi+1

q and can update the compressed signals
and deterministic matrix of the other nodes (received in the
previous iteration i) using:

∀k 6= q :{X(i+1)T
k yk(t)}t∈Tm = {G(i+1)T

k,q XiT
k yk(t)}t∈Tm ,

X
(i+1)T
k Bk = G

(i+1)T
k,q XiT

k Bk.
(15)

In the remaining R−1 iterations in Im, the only transmissions
done in the network are the broadcasts (14) performed by
the updating node (which changes at each iteration). Each

1838

node therefore needs to re-compress and re-broadcast the same
batch of samples only when it becomes an updating node. The
modifications are presented in Algorithm 2.

As mentioned previously, XiT
k yk is a Q−channel signal,

hence the initial broadcast has a communication cost in
O(NQ) per node and O(NQK) over the full network. Then,
for each iteration i ∈ Im (except the last one), the extra
data to be transmitted (only by a single node each time) is
given in (14), which has a cost in O(NQ) (assuming N is
large1). Note that the final updating node does not have to
broadcast (14) as the next iteration starts with a new batch.
Thus, over the R iterations in Im, the total communication
cost in the network is in O(NQ(K + R − 1)) per batch, as
opposed to a cost of O(NQKR) in the case of the “straight-
forward” approach mentioned earlier. Algorithm 2 thus allows
to perform R > 1 iterations per batch of N samples, albeit
with a larger communication bandwidth than Algorithm 1 (see
Table II). To appreciate why this is an efficient and desirable
tradeoff, consider the case where R = K. In this case, the
bandwidth of Algorithm 2 is doubled compared to Algorithm
1, yet the former can perform K iterations in the time where
the latter can only perform a single iteration (note that a
batch increment is directly coupled to the sample time of the
sensors). As a result, the convergence or tracking speed is K
times faster, whereas the bandwidth is only doubled. Moreover,
the communication cost is K/2 times more efficient than the
“straightforward” approach.

IV. SIMULATIONS

In this section, we demonstrate the performance of the
proposed method for two different spatial filtering algorithms:
LCMV beamforming and the EVD problem. These problems
have been studied in a DASF setting in [11], [12] for the
former and [13] for the latter, and were later shown to be
special cases of Algorithm 1 in [1]. In both cases, we consider
a WSN with K = 5 nodes, each measuring the signal yk

on Mk = 5 channels. The network-wide signal y has then
M = 25 channels and is modeled as

y(t) = C · d(t) + n(t), (16)

where d represents an S−dimensional source signal, C is
an M × S mixture matrix and n ∈ RM is an additive
noise signal. The values over time of d have been chosen
independently at random, following the zero-mean Gaussian
distribution with variance 0.5, i.e., N (0, 0.5). Similarly, each
entry of n independently followsN (0, 0.1). On the other hand,
the entries of the mixture matrix C are drawn from the uniform
distribution on the interval [−a, a].

In our experiments, the spatial covariance matrix Kyy =
E[y(t)yT (t)] is estimated using batches of N samples of y
during the time intervals Tm with the following estimator:

K̂yy =
1

N

∑
t∈Tm

y(t)yT (t). (17)

1In practice, the number of observations in a single batch is large in order
to estimate the statistics of ỹk [1]. As a result, the transmission of B̂k’s and
the parameters Gk,q becomes negligible. We therefore neglect these in the
asymptotic communication cost.

Algorithm 2: DASF in a Fully-Connected Network with
Data Re-Use

X0 initialized randomly, i← 0, m← 1.
repeat

1) Every node k collects {yk(t)}t∈Tm , compresses it
to obtain {ŷi

k(t)}t∈Tm using (4) and broadcasts the
compressed signals to all other nodes along with B̂i

k
defined in (4).

repeat R times
q ← (i mod K) + 1.
at Node q do

2a) X̃i+1
q ← argmin P̃i

q .
If the solution of (10) is not unique, select the
solution which minimizes ||X̃i+1

q − X̃i
q||F .

2b) Partition X̃i+1
q as in (6).

2c) Broadcast
{ŷi+1

q (t) = X
(i+1)T
q yq(t)}t∈Tm ,

B̂i+1
q = X

(i+1)T
q Bq and {Gi+1

k,q }k 6=q to all
other nodes.

end
3) For all k, every node updates Xi+1

k according
to (12) and recomputes
{ŷi+1

k (t)}t∈Tm = {G(i+1)T
k,q ŷi

k(t)}t∈Tm and
B̂i+1

k = G
(i+1)T
k,q B̂i

k.
i← i+ 1

m← m+ 1

TABLE II: Per batch communication cost for the original [1], straightforward,
and proposed methods.

Original Straightforward Proposed

O(NQK) O(NQKR) O(NQ(K +R− 1))

Each estimation of the covariance matrix is then used R times
before using newly collected data to obtain a new estimation
of Kyy. Additionally, we also change the entries of C at
random points in time by adding random numbers drawn from
N (0, σ2

C), to simulate a change in signal statistics and to
assess the tracking performances for different values of R (see
further). The metric we use to compare different approaches
that we present below is the mean-squared error (MSE):

ε(i) =
1

MQ
||Xi −X∗||2F , (18)

where Xi is only evaluated at the last update of the batch, i.e.,
i = mR−1 and where X∗ represents a solution of the global
optimization problem. Note that X∗ depends on Kyy which
changes during the simulations due to the additive noise on C
we mentioned previously. Therefore, the value of the optimal
filter X∗ will depend on the iteration as well.

A. LCMV beamforming

Let us consider the following LCMV beamforming problem

minimize
X∈RM×Q

E
[
||XTy(t)||2

]
= trace(XTKyyX)

subject to BTX = F,
(19)

1839

where the steering matrix B ∈ RM×J contains the first J
columns of the mixture matrix C, where we fix J = Q = 3,
and the elements of F ∈ RJ×Q are drawn independently at
random from N (0, 1). The unique solution of (19) is given
by X∗ = K−1yyB

(
BTK−1yyB

)−1
F . We take the number of

sources to be S = 10 and the statistical parameter of the
mixture matrix to be a = 0.5. We consider batches of size
N = 104 samples to obtain the estimator K̂yy (17) of the
spatial covariance matrix of y and take σ2

C = 10−3.
B. EVD problem

We take Q = 1 hence X = x ∈ RM and consider:

maximize
x∈RM

E
[
|xTy(t)|2

]
= xTKyyx

subject to xTx = 1.
(20)

This time, we take S = 1 such that d = d is a 1−dimensional
source signal and C = c is an M−dimensional vector with
statistical parameter a = 0.1. Moreover, the covariance matrix
is estimated using batches of N = 105 samples of y while
σ2
C = 10−4. There exists two solutions to (20) given by

the normalized eigenvectors of the covariance matrix Kyy

corresponding to the largest eigenvalue. Based on (16), they
are {±c/||c||} and we fix X∗ = x∗ = c/||c||.
C. Results

Figure 1 shows the results for R ∈ {1, 2, 3, 4,K = 5} for
both problems. For the case of R = 1, the results are obtained
using Algorithm 1, whereas we used Algorithm 2 when R ≥ 2.
The plots represent the median value of ε over 100 Monte-
Carlo runs. The time instants where C (or c = C) changes
are indicated by black vertical lines. We observe that for a
fixed C, the minimal MSE value is achieved faster for larger
values of R, which is eventually reached for every R ≥ 2
when the statistics of the signals do not change for a long
enough period of time. After every change in statistics, a slight
increase in the MSE can be observed but can be corrected if C
does not change too rapidly. A case worth highlighting is when
R = K = 5 which is very slightly affected by the changes of
C. On the other hand, if the signal statistics change too fast,
a larger value of R is necessary for tracking performances to
stay accurate. In the case of R = 1, i.e., the original DASF
algorithm (Algorithm 1), the MSE does not attain its minimal
value when the signal statistics change very frequently. Note
that the bandwidth is only doubled in the case of R = 5 (vs.
the case R = 1), while achieving a 5−fold faster convergence,
thereby allowing to (nearly) perfectly track the changes in C.

V. CONCLUSION

In this paper, we have proposed a scheme to improve the
convergence or tracking speed of the DASF algorithm for
a fully-connected WSN. This is done by efficiently com-
municating the data across the network so as to re-use the
same batch of observations over multiple iterations while
keeping the communication cost as low as possible. Our claims
were confirmed by simulation results. As a future work, an
extension of this scheme will be developed for general network
topologies.

Fig. 1: Comparison of the median MSE for different values of R in a network
with K = 5 nodes. The vertical lines in black represent time instants where C
changes. Top: Solving the LCMV problem described in IV-A. Bottom: Solving
the EVD problem described in IV-B.

REFERENCES

[1] C. A. Musluoglu and A. Bertrand, “A unified framework for distributed
adaptive signal and feature fusion problems — part I: Algorithm
description,” Submitted for publication - preprint available at https:
//homes.esat.kuleuven.be/∼abertran/reports/DSFO2021.pdf , 2021.

[2] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor net-
works and distributed sensor fusion,” in Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE, 2005, pp. 6698–6703.

[3] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064–4077, 2007.

[4] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4289–4305, 2012.

[5] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of
the IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[7] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Transactions on Signal Processing, vol. 67,
no. 4, pp. 977–992, 2018.

[8] C. Manss, D. Shutin, and G. Leus, “Distributed splitting-over-features
sparse bayesian learning with alternating direction method of multipli-
ers,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 3654–3658.

[9] C. Gratton, N. K. Venkategowda, R. Arablouei, and S. Werner, “Dis-
tributed learning over networks with non-smooth regularizers and feature
partitioning,” in 2021 29th European Signal Processing Conference
(EUSIPCO). IEEE, 2021, pp. 1840–1844.

[10] B. Zhang, J. Geng, W. Xu, and L. Lai, “Communication efficient
distributed learning with feature partitioned data,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2018,
pp. 1–6.

[11] S. Markovich-Golan, S. Gannot, and I. Cohen, “Distributed multiple
constraints generalized sidelobe canceler for fully connected wireless
acoustic sensor networks,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 2, pp. 343–356, 2012.

[12] A. Bertrand and M. Moonen, “Distributed LCMV beamforming in a
wireless sensor network with single-channel per-node signal transmis-
sion,” IEEE Transactions on Signal Processing, vol. 61, no. 13, pp.
3447–3459, 2013.

[13] ——, “Distributed adaptive estimation of covariance matrix eigenvectors
in wireless sensor networks with application to distributed PCA,” Signal
Processing, vol. 104, pp. 120–135, 2014.

[14] ——, “Distributed canonical correlation analysis in wireless sensor
networks with application to distributed blind source separation,” IEEE
Transactions on Signal Processing, vol. 63, no. 18, pp. 4800–4813, 2015.

1840

