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Abstract—We propose a distributed optimization framework to
generate accurate sparse estimates while allowing an algorithmic
solution with guaranteed convergence to a global minimizer.
To this end, the proposed problem formulation involves the
minimax concave penalty together with an additional penalty
called consensus promoting penalty (CPP) that induces convexity
to the resulting optimization problem. This problem is solved
with an exact first-order proximal gradient algorithm, which
employs a pair of proximity operators and is referred to as
the distributed proximal and debiasing-gradient (DPD) method.
Numerical examples show that CPP not only convexifies the whole
cost function, but it also accelerates the convergence speed with
respect to the system mismatch.

Index Terms—distributed optimization, nonconvex penalty,
Moreau envelope, proximity operator, sparseness

I. INTRODUCTION

Distributed optimization [2], [3] is a key component in many
applications such as big data analytics [4] and sensor networks
[5]. In some scenarios, such as environmental modeling, the
estimand can be assumed sparse, so convex penalties have
been used in optimization problems to promote sparsity of the
solutions. Such convex formulations can be addressed with
algorithms such as the proximal distributed gradient descent
(Prox-DGD) [6] and the proximal gradient exact first-order
algorithm (PG-EXTRA) [7], to name a few. However, despite
the tractability of the convergence analysis, convex penalties
typically increase the estimation bias to reduce the variance
of the estimates.

In the context of nondistributed optimization, nonconvex
penalties [8], [9] have widely been studied to reduce estimation
biases. Weakly-convex penalties [10]–[13], in particular, allow
algorithmic solutions with global optimality because the con-
vexity of the overall cost can be preserved if the loss function
is strongly convex. In typical distributed settings, however, the
amount of data available at each node is limited, so the local
loss function is not necessarily strongly convex, and hence
each local cost may not be convex.

To address the above challenge, we can use approaches
dealing with nonsmooth nonconvex penalties. Most, if not
all, of the previous studies on nonconvex distributed ap-
proaches [14]–[16] have shown convergence to a stationary
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point. Examples of approaches of this type include the Prox-
DGD [17] and the in-network nonconvex optimization (NEXT)
[18]. Although the approaches in [19] and [20] have shown
convergence to a second-order optimal point, they require
smoothness of the cost functions.

In our recent work [21], the minimax concave (MC) penalty
[10], [11] has been used based on the following idea. An
application of Moreau’s decomposition decouples the MC pen-
alty into a sum of a convex function and a negative squared ℓ2
norm. The idea therein was to approximate this concave quad-
ratic term by the sum of the squared inner product between the
estimate and each input vector, where the approximation relies
on the statistical orthogonality assumption of input vectors.
The resultant penalty function, which is referred to as the
approximate MC (AMC) penalty, convexifies the local cost,
thereby ensuring convergence to a global minimizer. Despite
global optimality, AMC tends to yield less accurate estimates
than the original MC penalty particularly when the underlying
assumption is violated. This fact motivates us to devise a better
formulation using the MC penalty while guaranteeing global
optimality.

In this paper, we propose a different formulation that
utilizes the MC penalty without the need for approximations.
Specifically, we introduce an additional term which we call
the consensus promoting penalty (CPP) that makes each local
cost function convex with respect to each local variable. In
addition, we show by simulations that CPP will make the
whole “global” cost function convex. The proposed formu-
lation is referred to as the MC-CPP formulation. Numerical
examples suggest that the MC-CPP cost function is convex,
and the estimates generated by the PG-EXTRA algorithm
implementing MC-CPP achieve the same level of errors as
the centralized solution at the steady state.

II. PRELIMINARIES

This section introduces notation, convex analytic tools, and
the distributed sparse optimization problem.

A. Notation
Let RN denote the N(∈ N) dimensional Euclidean space,

where N denotes the set of nonnegative integers. The vector in
RN with all components set to one is denoted by 1N , and the
vector with all components set to zero is denoted by 0N . The
identity matrix is denoted by IN , and the identity operator is
denoted by I . The N × N matrix with all zero components

1841ISBN: 978-1-6654-6798-8 EUSIPCO 2022



is denoted by ON . A k sparse vector x ∈ RN is a vector
with at most k nonzero components. The ith element of a
vector x ∈ RN is denoted by xi, i ∈ {1, 2, · · · , N}. Similarly,
the (i, j) component of a matrix X ∈ RN×M is denoted by
xij , where i, j ∈ N and i ∈ {1, 2, · · ·N}, j ∈ {1, 2, · · ·M}.
Let tr(A) denote the sum of the main diagonal elements of
a square matrix. The ℓp norm (p ∈ {1, 2, · · · }) of vector
x ∈ RN is defined by ∥x∥p := (

∑N
i=1 x

p
i )

1/p. The inner
product of x,y ∈ RN is defined by ⟨x,y⟩ :=

∑N
i=1 xiyi.

The Frobenius norm of a matrix A ∈ RN×M is defined by
∥A∥F :=(

∑N
i=1

∑M
j=1 a

2
ij)

1/2.

B. Convex analytic tools

A function f : RN → (−∞,+∞) is convex if f(tx+(1−
t)y) ≤ tf(x) + (1 − t)f(y) for any x,y ∈ RN and every
t ∈ (0, 1). A function is η-weakly convex if f + η 1

2∥ · ∥22 is
convex for some η > 0. Furthermore, a function is η-strongly
convex when f − η 1

2∥ · ∥22 is convex. We denote by Γ0(RN )
the class of proper lower semicontinuous convex functions1

from RN to (−∞,+∞]. The Fenchel conjugate function of
f ∈ Γ0(RN ) is defined by f∗(x) := supy∈RN (⟨x,y⟩−f(y))
[22]. The Moreau envelope γf of f of index γ > 0 is
defined by γf(x) := infy∈RN

(
f(y)+ 1

2γ ∥x−y∥22
)

[22].
The proximity operator proxf is defined by proxf (x) :=
arg min
y∈RN

(
f(y)+ 1

2∥x−y∥22
)

[22]. The smallest and largest

eigenvalues of a symmetric matrix A are denoted by λmin(A)
and λmax(A).

C. Distributed sparse optimization

Let G(V, E) be an undirected graph, where V :=
{1, 2, · · · ,m} denotes a set of nodes (vertices), and E denotes
a set of edges. Here, (i, j) ∈ E means that there is an edge
between i ∈ V and j ∈ V . Each node i ∈ V is connected to
ri = |Ni| nodes, where |Ni| denotes the cardinality of the set
Ni of neighboring nodes of node i. We use the convention
that i /∈ Ni. The graph is assumed connected; i.e., there exists
a path that connects any pair of nodes in a single or multihop
way. We consider a situation where each node i has the
local sensing matrix Ui ∈ RN×l and the local measurement
vector di = U⊤

i w∗ + ni ∈ Rl, where w∗ ∈ RN is the
sparse unknown vector (which is common to every node),
and ni ∈ Rl, i = 1, 2, · · · ,m, is the additive noise. The
objective of distributed sparse optimization is to estimate the
sparse vector w∗ over the entire network via local updates at
each node and information exchanges among nodes.

III. PROPOSED APPROACH

We present the proposed problem formulation for distributed
sparse optimization based on the consensus promoting penalty,
and we then discuss the convexity of the cost function. We
finally present a distributed optimization algorithm to solve
the proposed formulation.

1A convex function f : RN → (−∞,+∞] is proper if f(x) < +∞
for some x ∈ RN . A convex function f : RN → (−∞,+∞] is lower
semicontinuous if lev≤af := {x ∈ RN | f(x) ≤ a} is a closed set for any
a ∈ R.

A. Formulation based on MC penalty
We start with the following penalized formulation:

(P0) min
w∈RN

ψ(w) :=

m∑
i=1

[
ϕi(w) +

µ

m
π(w)︸ ︷︷ ︸

=:ψi(w)

]
, (1)

where we refer to ψ(w) as the vector global cost and ψi(w)
as the vector local cost of problem (P0) because its argument
w is a vector. Here, ϕi(w) = 1

2∥U⊤
i w − di∥22, µ > 0, and

π(w) := ∥w∥1 − min
v∈RN

(
∥v∥1 +

1

2γ
∥w − v∥22

)
(2)

is a weakly convex penalty called the minimax concave (MC)
penalty [10], [11], where γ ∈ (0,+∞]. The ℓ1 norm is separ-
able and proximable (in the sense that the proximity operator
can be easily computed). To preserve the overall convexity
of the entire cost, we assume that η := λmin(UU⊤) > 0,
so that ϕ(w) :=

∑m
i=1 ϕi(w) is η-strongly convex for U :=

[ U1 U2 · · · Um]. In contrast, each ϕi is not strongly convex
in typical scenarios.

By virtue of Moreau’s decomposition [22] γf + 1/γ(f∗) ◦
γ−1I = 1

2γ ∥ · ∥22 of f ∈ Γ0(RN ), the penalty can be rewritten
as

π(w)=∥w∥1−γ−1

(
1

2
∥w∥22 − γ

1
γ (∥ · ∥∗1)(γ−1w)

)
. (3)

Substituting (3) into (1) yields

ψ(w)=

(
m∑
i=1

ϕi(w)

)
− µ

2γ
∥w∥22+µ∥w∥1+µ

1
γ(∥ · ∥∗1)(γ−1w).

(4)

Due to the η-strong convexity of ϕ(w) and the convexity of
the third and fourth terms of (4), the convexity of the entire
function ψ is ensured as long as η − µ/γ ≥ 0. However,
the local function ψi(w) cannot be convex unless ϕi(w) is
strongly convex. Let W = [w1w2 · · ·wm]⊤ ∈ Rm×N , where
wi ∈ RN is the estimate of wψ

opt := arg min
w∈RN

ψ(w) at node

i ∈ V . Note here that the vector global cost ψ(w) possesses a
unique minimizer due to the strong convexity of ψ(w). Define
the consensus subspace C := {W ∈ Rm×N | w1 = w2 =
· · · = wm}. Problem (P0) can then be formulated equivalently
as the following constrained optimization problem:

(P1) min
W∈C

Ψ(W ) :=

m∑
i=1

[
ϕi(wi) +

µ

m
π(wi)︸ ︷︷ ︸

=ψi(wi)

]
, (5)

where we refer to Ψ(W ) as the matrix global cost and ψi(wi)
as the matrix local cost of problem (P1) since the argument
W of Ψ is a matrix. Under consideration is the challenging
case where Ψ(W ) is nonconvex. With weak convexity of
µ
mΠ(W ) :=

∑m
i=1

µ
mπ(wi), the matrix global cost Ψ(W )

can be convex only if Φ(W ) :=
∑m
i=1 ϕi(wi) is strongly

convex, which can only be true, due to its separability, if every
term ϕi(wi) is strongly convex. This implies that the matrix
global cost Ψ(W ) is convex only if every node has sufficient
information that admits a unique solution. In the following
subsection, we present a simple and effective method that
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Table I: Types of costs for MC-CPP

local (each node) global (entire network)
vector (i) ψi(w) (ii) ψ(w)
w vector local cost vector global cost

matrix (iii) θi(wi) (iv) Θ(W )
W matrix local cost matrix global cost

allows to deal with the challenging, yet realistic, nonconvex
case if l < N (i.e., when the number l of local linear equations
is smaller than the number N of local variables). In fact,
Ψ(W ) can be convex only if l ≥ N is satisfied.2

B. Proposed formulation with consensus promoting penalty:
convexity analysis

We introduce a consensus promoting penalty (CPP) term
(which is inspired from the incidence matrix [23], [24])
C(W ) :=

∑m
i=1

κi

2 ∥wi−wi∥22 to get the following minimax
concave CPP (MC-CPP) formulation:

(P2) min
W∈C

Θ(W ) := Ψ(W ) + C(W ) (6)

=

m∑
i=1

[
ϕi(wi)+

µ

m
π(wi)︸ ︷︷ ︸

=ψi(wi)

+
κi
2
∥wi−wi∥22︸ ︷︷ ︸
=:Ci(W )︸ ︷︷ ︸

θi(wi)

]
, (7)

where wi =
∑
j∈Ni

αijwj , κi ≥ 0,∀i ∈ {1, 2, · · · ,m}, with
αij = αji ∈ (0, 1) such that

∑
j∈Ni

αij = 1. Substituting (2)
into (7), Θ(W ) can be separated into smooth and nonsmooth
parts as Θ(W ) = S(W ) +H(W ), where

S(W ) =

m∑
i=1

(
ϕi(wi) + Ci(W )

)
− µ

mγ

m∑
i=1

1

2
∥wi∥22︸ ︷︷ ︸

=:F (W )

+
µ

m

m∑
i=1

(1/γ∥ · ∥∗1)(γ−1wi), (8)

and H(W ) := µ
m

∑m
i=1 ∥wi∥1. Under certain parameter

conditions, convexity of the matrix local cost can be ensured.
However, this does not directly mean that the matrix global
cost is convex. This is because CPP is regarded as a function
of wi in the matrix local cost, while it is a function of W
in the matrix global cost. We summarize the four types of
cost function in Table I. The vector global cost of the MC-
CPP is ψ(w) because C(W ) = 0 for any W ∈ C. Likewise,
the vector local cost is ψi(w) because θi(w) = ψi(w) for
any W ∈ C. Since wi = W⊤ei ∈ RN , we rewrite CPP as
Ci(W ) = κi

2 ∥wi −wi∥22 = κi

2 ∥W⊤vi∥22, where vi := ei −∑
j∈Ni

αijej ∈ Rm. Let us define W =: [ŵ1 ŵ2 · · · ŵN ],

2In environmental modeling scenarios, for instance, weather sensors may
take few measurements and the environment changes slowly compared with
the time to apply many iterations of the algorithm.

Table II: Convexity condition for each cost with MC-CPP

local global
vector (i) ηi >

µ
mγ

(ii) µ/γ < η

w (but ηi = 0 typically)
matrix (iii) κ ≥ µ

mγ
(iv) To be investigated

W (see Figure 2)

and Vκ := [
√
κ1v1

√
κ2v2 · · · √

κmvm] ∈ Rm×m. The CPP
term can then be expressed as

C(W ) :=

m∑
i=1

Ci(W ) =
1

2

m∑
i=1

N∑
j=1

κiŵ
⊤
j viv

⊤
i ŵj

=
1

2

N∑
j=1

ŵ⊤
j VκV

⊤
κ ŵj . (9)

Strong convexity of the consensus promoting penalty can thus
be analyzed by inspecting strict positivity of the eigenvalues
of VκV ⊤

κ . We now highlight the following equivalence:

C(W ) = 0 ⇔ W ∈ C. (10)

Here, ⇐ is clear. To verify the converse ⇒, we express Vκ
as Vκ = V Λκ with V := [v1 v2 · · · vm] ∈ Rm×m,
and Λκ := diag(

√
κ1,

√
κ2, · · · ,

√
κm), where diag(·) is

the diagonal matrix with its diagonal entries given by the
arguments. It is then sufficient, from the nonsingularity of the
matrix Λκ, to show that (KerV ⊤

κ =)KerV ⊤ = span{1}.
Clearly, the matrix Y ⊤ := Im − V ⊤ shares the eigenspace
with V ⊤, and the eigenvalue one of Y ⊤ and the eigenvalue
zero of V ⊤ both correspond to the same eigenvector 1m. Now,
Y ⊤ is a nonnegative matrix that is irreducible3 as the graph is
assumed connected. The classical Perron Frobenius theory thus
tells us that the eigenvalue one corresponding to the positive
eigenvector 1m is simple (has algebraic multiplicity one),
which implies the equality of the assertion. By (10), C(W )
does not change the entire cost on the consensus subspace C,
meaning that the global minimizer (the optimal solution) is
preserved. More importantly, it also implies that the function
C(W ) is nonzero, and it is actually strongly convex on the
orthogonal complement C⊥ of C. We summarize the important
points below. (See [1] for proofs of the lemmas and proposition
given in the following.)

Lemma 1. (a) Each matrix local cost θi(wi) is convex if
κi ≥ µ

mγ .

(b) Each vector local cost ψi(w) is convex iff
(λmin(UiU

⊤
i ) =:)ηi ≥ µ

mγ .
(c) The vector global cost ψ(w) is convex iff

(λmin(UU⊤) =:)η ≥ µ
γ .

(d) min
W∈C

Θ(W ) = min
W∈C

Ψ(W ).

(e) arg min
W∈C

Θ(W ) = arg min
W∈C

Ψ(W ).

The convexity conditions are summarized in Table II. Note
here that ηi = 0 (i.e., ϕi is not strongly convex) in typical
situations, because each local node is supposed to have no
sufficient amount of measurements to identify the solution

3A square matrix is said to be irreducible if the matrix cannot be reorganized
into a block upper-triangular form by simultaneous row/column permutations.
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so the nodes need to collaborate with each other (cf. Section
III-A).

Lemma 2. Regarding the costs (i)− (iv) presented in Table
I, the following implications hold.

1) Convexity of (i) implies convexity of (ii), (iii), (iv).
2) Convexity of (iv) implies convexity of (ii).

Proposition 1. Let range U = RN so that the function
w 7→∑m

i=1 ϕi(w) is η-strongly convex for η := λmin(UU⊤)
(see Section III-A). Assume that the graph is connected. Then
Θ(W ) is convex only if µ ≤ ηγ.

Most existing algorithms for distributed convex optimization
assume convexity of the vector local cost, which is not
apparent with the use of CPP. In some algorithms such as the
PG-EXTRA, however, the convexity of the vector local cost
itself is not used explicitly to prove the convergence of the
algorithm, and it is only used to ensure convexity of the matrix
global cost, which is used directly to prove the convergence.
Therefore, convexity of the matrix global cost will be studied
by simulations in Section IV-B.

C. Distributed proximal debiasing-gradient (DPD) method
Let Wk ∈ Rm×N denote the variable matrix at

time k ∈ N, and M , M̃ ∈ Rm×m are the mixing
matrices.4 The gradient of S(W ) is denoted by ∇S(W ) =
[∇s1(w1)∇s2(w2) . . .∇sm(wm)]⊤. By using the property
∇γf = γ−1(I − proxγf ) for f ∈ Γ0(RN ), γ > 0 [22,
Ch. 14] in (8), we have ∇si(w) = ∇ϕi(w) − µ

γm

(
w −

proxγh(w)
)
+ κi(w − wi). By the triangle inequality and

the (firm) nonexpansivity of proxγh, the following inequality
holds:

∥∇si(x)−∇si(y)∥2
≤ ∥∇ϕi(x)−∇ϕi(y)∥2 +

∥∥∥∥(κi− µ

γm

)
(x− y)

∥∥∥∥
2

+
µ

γm

∥∥∥proxγ∥·∥1
(x)−proxγ∥·∥1

(y)
∥∥∥
2
≤(Li + κi)∥x− y∥2.

Here, Li := λ
1/2
max(UiU

⊤
i ) is the Lipschitz constant of ∇ϕi;

i.e., ∥∇ϕi(x)−∇ϕi(y)∥2 ≤ Li∥x−y∥2 for any x,y ∈ RN .
An application of PG-EXTRA [7] to the proposed formula-

tion (P2) yields Algorithm 1. Note that other algorithms can be
applied to (P2) that assume convex, proximable penalties. We
refer to this particular method utilizing the two proximity op-
erators as the distributed proximal debiasing-gradient method
(DPD). Hereafter, we assume that all nodes have the same
number of neighbors i.e., r1 = r2 = · · · = rm =: r for
simplicity.

IV. NUMERICAL EXAMPLES

We study the performance of the proposed algorithm for
ϕi(wi) = 1

2∥u⊤
iwi−di∥22 (l = 1), where ui ∈ RN is the

input vector, distributed according to ui ∼ N (0N , IN ) i =
1, 2, · · · ,m, and di = u⊤

i w
∗ + ni is the output (see Sec-

tion 2.2). The normalized error is defined as Error(x,y) =

4The mixing matrices M and M̃ are subject to the following conditions
[7]: (i) If i ̸= j and (i, j) /∈ E , then Mij = M̃ij = 0, (ii) M = MT, M̃ =
M̃T, (iii) null(M−M̃) = span{1m}, null(Im−M̃) ⊇ span{1m}, and
(iv) M̃ ≻ 0 and Im+M

2
⪰ M̃ ⪰ M .

Algorithm 1 DPD-CPP derived from PG-EXTRA

Require: κi > 0, i = 1, 2, · · · ,m, 0 < β ≤
2λmin(M̃)/max{Li + κi}mi=1, µ > 0 and γ > 0 such
that µ/γ < min{λ2(VκV ⊤

κ ), η}
W0 is an arbitrary point

1: ∇S(W0) = ∇Φ(W0) − µ
mγW0 +

diag(κ1, κ2, · · · , κm)(W0 −W 0) +
µ
mγ proxγ∥·∥1

(W0)
2: W 1

2
= MW0 − β∇S (W0)

3: W1 = proxµβ
m ∥·∥1

(W0)

4: for k = 0, 1, 2, · · · do
5: ∇S(Wk+1) = ∇Φ(Wk+1) − µ

mγWk+1 +

diag(κ1, κ2, · · · , κm)(Wk+1 − W k+1) +
µ
mγ proxγ∥·∥1

(Wk+1)

6: Wk+1+1
2

= MWk+1 + Wk+1
2

− M̃Wk −
β [∇S(Wk+1)−∇S(Wk)]

7: Wk+2 = proxµβ
m ∥·∥1

(Wk+1+ 1
2
)

8: end for
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Figure 1: Learning curves in system mismatch of the average
estimates.

10 log10

(
∥x−y∥2

2

∥x∥2
2

)
. Furthermore, the components of the mix-

ing matrix M are set to mij =


ζ
r+1 if j ∈ Ni

1− ζr
r+1 if i = j

0 otherwise,
where

ζ ∈ (0, r+1
r ) indicates the strength of the influence of the

neighboring estimates, and M̃ = Im+M
2 .

A. Learning speed of proposed approaches
The dimension of w∗ is N = 10, the network consists of

m = 100 nodes with r = 5 neighboring nodes, and the signal
to noise ratio (SNR) is 30 dB. The estimandum w∗ is 30%
sparse. For CPP, we let V ⊤ = r+1

r (Im − M) with ζ = 1.
The parameters of the proposed algorithm are set to µ = 9.0×
10−3, γ = 0.1.5, β = 0.022, (ζ, κ) = (0.15, 0), (0.4, 10).
The parameters of PG-EXTRA with the ℓ1 penalty (DPD with
γ = +∞, κ = 0) are set to µ = 1.9 × 10−3, β = 0.011, and
ζ = 1. Prox-DGD [17] is also tested for reference, where the
step size of Prox-DGD is set to 0.014, and the parameters for
the MC penalty are set to the same value as DPD.

Figure 1 plots Error(w∗, 1
mW⊤1m), the system mismatch

of an average estimate over nodes, where the dashed line
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Figure 2: A histogram of the smallest eigenvalue of Hessian
of Θ(W ) with different U and different graphs.

at the bottom is a benchmark, showing the performance of
a centralized approach to problem (P0). One can see that
the proposed MC-based approaches significantly outperform
the ℓ1-based approach, while the Prox-DGD method suffers
from slow convergence. One can also see that the proposed
method achieves the same error as the centralized solution (the
benchmark) even without CPP, which leaves the possibility
that PG-EXTRA applied to the minimization problem of
Ψ(W ) would still enjoy provable convergence.

B. Convexity with CPP

We study the convexity of the cost function with the CPP
term, which is designed for the cost to become convex when
W ∈ C⊥. However, the assurance of the convexity over
the whole space RN×m still remains to be proven. Specific-
ally, we inspect strong convexity of the quadratic function
Φ(W ) +C(W ) for µ = 0, or equivalently strict positivity of
the smallest eigenvalue of its Hessian matrix. The parameters
are set to N = 10,m = 50, and r = 2.

Figure 2 plots the frequency of the smallest eigenvalue of Θ
over 1000 trials. The blue bar in the figure considers the case
when U is changed using numpy.random.randn, while the
orange bar considers the case when the weights of the graph
are fixed to r = 1

d with the links of underlying graph selected
randomly. In both cases, it is clear that the smallest eigenvalue
remains positive. This means that, in this scenario, CPP would
serve to convexify the matrix global cost, which may suggest
that weakly convex penalties can be used in distributed settings
with convergence guarantees to a global minimizer.

V. CONCLUDING REMARKS

We introduce a consensus promoting penalty that has the
object of convexifying a cost function containing the weakly
convex MC penalty. The convexity of the cost is desirable
because the formulation can yield accurate sparse estimates
with convergence guarantees to a global minimizer. Numerical
examples showed that the CPP convexified the entire matrix
global cost, and it also accelerated the speed of convergence.
The use of the MC penalty in online scenarios has been studied
in [25], and an extension of the present work to online settings
will be an interesting future work.
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