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Abstract—This paper presents a new approach to distributed
linear filtering and prediction. The problem under consideration
consists of a random dynamical system observed by a multi-agent
network of sensors where the network is sparse. Inspired by the
consensus+innovations type of distributed estimation approaches,
this paper proposes a novel algorithm that fuses the concepts of
consensus and innovations. The paper introduces a definition of
distributed observability, required by the proposed algorithm,
which is a weaker assumption than that of global observability
and connected network assumptions combined together. Follow-
ing first principles, the optimal gain matrices are designed such
that the mean-squared error of estimation is minimized at each
agent and the distributed version of the algebraic Riccati equation
is derived for computing the gains.

Index Terms—Kalman filter, distributed estimation, multiagent
networks, distributed algorithms, consensus

I. INTRODUCTION

The Kalman filter [1], [2] is a celebrated solution for
linear filtering and prediction of time-varying random fields
observed with noisy measurements. The growing need for
data privacy and robustness from centralized server failure,
led to the development of distributed filtering and predictions
algorithms. These new genre of distributed estimation algo-
rithms [3], [4] further reduces the large communication and
computation overload at the centralized processors. Thereby,
they position themselves as a critical framework for several
applications namely multi-agent control [5], indoor positioning
& navigation, state estimation in power grid, spatio-temporal
environment or field monitoring [6], connected vehicular net-
work for traffic balancing & accident aversion, collaborative
target tracking [7] etc.

In the literature, there are distributed estimators where
the agents exchange information multiple number of times
between each dynamics/observations iterates [8]–[14], so that
average consensus occurs between observations. There are
also single time-scale approaches [15]–[21] where the agents
collaborate with their neighbors only once in between each
dynamics/observation cycle. There are distributed Kalman
filters [22], [23] where the agents communicate among them-
selves using the Gossip protocol [24], over a dynamic com-
munication network [25] or over noisy/corrupted communi-
cation channels [26]–[28]. Some distributed estimators run a
companion filter to estimate the global average of the pseudo-
innovations [29], [30], a modified version of the innovations.

There is a gap in the literature in providing for a distributed
state estimation algorithm that is as general and robust as
its centralized counterpart, the Kalman filter. In some papers,
there are stricter assumptions on the local observation model
or the communication network among the agents, for exam-
ple neighborhood observability [31], [32] or an undirected
connected graph [15]. In practical distributed settings, these
assumptions become a bottleneck. In other papers, there is
an upper limit on the degree of instability on the system
dynamics that a given observation-network model can handle
with bounded MSE [33]. Such algorithms become inapplicable
to distributed process control domains where the underlying
systems are inherently unstable and needs to be stabilized by
appropriate control input. If the estimation algorithm fails to
track the unstable system, then the design of a stabilizable
control input become infeasible. The biggest gap is in the
optimality of the distributed state estimates which leverages
the maximum information available from the local observa-
tions and the estimates obtained from neighbors. The literature
lacks in providing the optimal gain matrix design such that the
algorithm yields yield minimum MSE estimates.

This paper proposes a novel framework and an algorithm
that addresses all these gaps in the distributed filtering and
prediction literature. The algorithm is provided in Section IV,
where the consensus on the state estimates are treated as inno-
vations and the gain matrices are designed appropriately. Such
optimal gains, provided in Section VI, yield field estimates
with minimum mean-squared error (MMSE) at each agent
under the assumption of distributed obervability at each agent.
A new definition of distributed observability is introduced in
Section III which is agnostic of the communication graph
being directed or undirected and does not require the graph
to be connected. First, we start with setting up the system-
observation model framework in the following Section II.

II. SYSTEM-OBSERVATION-COMMUNICATION MODEL

The system under consideration follows a discrete-time,
linear, and time-invariant state-space model

xk = Fxk−1 +wk−1, (1)

where, xk ∈ Rn is the dynamic random state vector, F ∈
Rn×n is the state transition matrix, wk ∈ Rn is the system
noise at all time t = kT where T is the discrete-time step
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size and k is an integer time index. The system noise is white
Gaussian noise with zero mean and covariance matrix Qk,
i.e., wk ∼ N (0, Qk). The initial condition of the system, x0

is also Gaussian, that follows x0 ∼ N (x0, P
+
0 ).

The dynamic random state (1) is observed by a multi-agent
network of m agents (sensors). Each agent i observes only
a few state variables and makes low dimensional measure-
ments zi,k ∈ Rpi , such that pi << n,∀i = 1, . . . ,m. The
observations of the agents in the cyber layer is represented by
a linear and time-invariant model

zi,k = Hixk + vi,k, i = 1, . . . ,m (2)

where, Hi ∈ Rpi×n is the measurement matrix and vi,k ∈ Rpi

is the measurement noise. The measurement noise, at each
agent i, is also white Gaussian noise with zero mean and
covariance matrix Ri,k, i.e., vi,k ∼ N (0, Ri,k). The sys-
tem noise, the measurement noise, and the initial condition
{{wk}, {vi,k},x0}∀i,k≥0 are uncorrelated random sequences.

The agents in the network layer exchange their measure-
ments and current estimates with their neighbors. Formally, the
agent communication network is represented by a simple (no
self-loops nor multiple edges) and directed graph G = (V, E),
where V = {i : i = 1, . . . ,m} is the set of agents and
E = {(i, j) : ∃ an edge j → i} is the set of local communica-
tion channels among the agents. We consider directed graph
(one-way communications), that means our algorithm is easily
extendable to undirected graphs (two-way communications)
but the reverse is not always true. The adjacency matrix of G
is denoted by A = [aij ] ∈ Rm×m, where,

aij =

{
1, if ∃ an edge j → i
0, otherwise. (3)

For details on graphs refer to [34]. The communication net-
work is sparse and time-invariant. For each agent i, let’s define
the open and closed neighborhoods as: Ωi = {j|(i, j) ∈ E},
and Ωi = {i} ∪ {j|(i, j) ∈ E}, respectively.

As in the case of a classical optimal Kalman filter, each
agent i in the framework knows the system model, F and Qk,
the initial condition statistics, x0 and P+

0 , the parameters of its
and neighbors’ measurement models, {Hj , Rj,k : j ∈ Ωi}, and
the communication network model, G along with the adjacency
matrix A. Note that the time-invariant state-space is chosen for
notational simplicity. All the derivations, assumptions and the
results in this paper also hold for a time-varying state-space
model (Fk, Hi,k, Ri,k, Qk).

III. DISTRIBUTED OBSERVABILITY

Before we propose the distributed estimation algorithm and
describe the design of the optimal gain, we introduce the
notion of distributed observability, a measure of how well
internal states of a system can be inferred from knowledge
of its local measurements and interactions among agents
in the network. Consider the physical system-observation-
communication modeled by the state-space-network represen-
taion (1)-(3). The local observability matrix Gi ∈ Rnpi×n and

the global observability matrix G ∈ R(nΣm
i=1pi)×n of the

network are denoted by,

Gi =


Hi

HiF
HiF

2

...
HiF

n−1

 , ∀ i ∈ V; G =


G1

G2

...
Gm

 . (4)

Let’s define the connectivity matrix Ã of the network as,

Ã = Im +A+A2 + . . .+Am−1. (5)

The element [Aq]i,j of the matrix, Aq ∀q ∈ Z+, gives the
number of directed walks of length q from agent j to agent i.
Then, the connectivity matrix is a non-negative matrix, Ã ≥ 0,
and its elements [Ã]i,j = ãi,j denote the total number of walks
(of any length < m) from node j to node i.

Remark 1. If there exists i, j such that ãi,j = 0, then there
doesn’t exist any path from j to i and would imply that the
graph is not connected. The agent communication network,
i.e., the directed graph, is connected if the connectivity matrix,
defined in (5), is a positive matrix, i.e., Ã > 0. For a fully
connected network, Im +A > 0.

Remark 2. Although most literature in distributed estimation
requires a connected graph, but connected graph is not a
necessary condition for the distributed observability (defined
below) and is also not required for the distributed estimation
algorithm proposed in this paper.

Let the quantity Ãi denote the ith row of the matrix Ã
and the symbol • denote the face-splitting product of matrices
(transposed Khatri–Rao product).

Definition 1 (Distributed Observability). If the row rank of
the distributed observability matrix Oi, defined as,

Oi = Ãi •G =


ãi,1
ãi,2

...
ãi,m

 •


G1

G2

...
Gm

 =


ãi,1 ⊗G1

ãi,2 ⊗G2

...
ãi,m ⊗Gm

 (6)

is equal to n, then the system is distributedly observable at
agent i.

Note that, Oi ∈ R(nΣm
i=1pi)×n. The requirement of invert-

ibility (or full-rank) of the distributed observability Gramian,
OT

i Oi, is an equivalent alternative of the distributed observ-
ability definition, i.e., rank(OT

i Oi) = n.

Assumption 1. The state-space-network model (1)-(3) is
distributedly observable at all agents in the network.

This crucial assumption ensures that the proposed dis-
tributed estimator converges with bounded mean-squared er-
ror1. Note that there is no requirement for the system to be

1A slightly weaker criteria defined as distributed detectability suffices for
the convergence of the proposed algorithm. It requires only the unstable states
to be observable.
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stable or the network to be connected. With the distributed ob-
servability definition & Assumption 1, we state the algorithm
in the next section followed by the optimal gain design.

IV. DISTRIBUTED ESTIMATION ALGORITHM

At time k and agent i, let us denote the filter and prediction
estimates of the system by x̂+

i,k and x̂−
i,k, respectively, and

the filter and prediction error covariance matrices by P+
i,k

and P−
i,k, respectively. The prediction and filtering updates of

the distributed estimation algorithm at agent i are:

x̂−
i,k = F x̂+

i,k−1 (7)

P−
i,k = FP+

i,k−1F
T +Qk (8)

Ki,k= Σx,yiΣ
−1
yi (9)

x̂+
i,k= x̂−

i,k+
∑
j∈Ωi

Bij,k

(
x̂−

j,k−x̂−
i,k

)
+
∑
j∈Ωi

Mij,k

(
zj,k−Hjx̂

−
i,k

)
(10)

P+
i,k = P−

i,k −Ki,kΣ
T
x,yi (11)

where, Ki,k ∈ Rn×
(∑

j∈Ωi
pj+n|Ωi|

)
is the distributed gain

matrix. The covariance matrices Σx,yi and Σyi are derived
in the optimal gain design Section VI. The local consensus
weight matrices, Bij,k ∈ Rn×n, and the local innovation
weight matrices, Mij,k ∈ Rn×pj , are obtained from the
distributed gain matrix Ki,k as shown in (15).

The equations (7)-(11) represents the proposed distributed
estimation algorithm, where the minimized MSE prediction
and filter estimates x̂−

i,k and x̂+
i,k are the conditional means,

x̂−
i,k = E

[
xk | {zj,k−1}j∈Ωi

, {x̂+
j,k−1}j∈Ωi

]
(12)

x̂+
i,k = E

[
xk | {zj,k}j∈Ωi

, {x̂−
j,k}j∈Ωi

]
. (13)

The filter update (10) is visually similar to consen-
sus+innovations type of algorithms2. But functionally this
algorithm fuses the concepts of consensus and innovations by
treating the consensus on the state estimates as innovations
along with the local innovations of the agent and its neighbors.
To best represent this functionality, the filter update (10) is re-
written with the local innovation term, yi,k at agent i, as:

x̂+
i,k =x̂−

i,k +Ki,k



zj1,k −Hj1 x̂
−
i,k

··
zi,k −Hix̂

−
i,k

··
zj|Ωi|

,k −Hj|Ωi|
x̂−

i,k

x̂−
j1,k

− x̂−
i,k

...
...

x̂−
j|Ωi|,k

− x̂−
i,k


︸ ︷︷ ︸

yi,k

, where, (14)

Ki,k =
[
Mij1,k, ··,Mii,k, ··,Mij|Ωi|

,k, Bij1,k, · · · , Bij|Ωi|,k

]
,

(15)

{j1, ··, i, ··, j|Ωi|} = Ωi and {j1, · · · , j|Ωi|} = Ωi.
The innovation sequences {yi,k}∀i,k≥0 are Gaussian ran-

dom vectors, uncorrelated and are with zero mean, E[yi,k] =
0, ∀i, k ≥ 0. These innovation terms are key to the optimal
design of the gain matrices.

2The distributed estimator is inspired by the pseudo-innovations, pseudo-
observations and pseudo-state approaches that are summarized in [35], [36].

V. ERROR ANALYSIS

Now we derive the predictor and filter error terms, ϵ−i,k ∈ Rn

and ϵ+i,k ∈ Rn, respectively, at each agent i,

ϵ−i,k = xk − x̂−
i,k (16)

ϵ+i,k = xk − x̂+
i,k. (17)

The error processes ϵ−i,k and ϵ+i,k are unbiased, i.e, they are
zero mean at all agents and for all time indices, E[ϵ−i,k] = 0

and E[ϵ+i,k] = 0, ∀i, k ≥ 0. The error processes follows:
ϵ−i,k ∼ N (0n,P

−
i,k) and ϵ+i,k ∼ N (0n,P

+
i,k). This shows

that the distributed prediction x̂−
i,k and filtering x̂+

i,k estimates
provided by this algorithm are unbiased.

From equation (14) and using (2), the innovations are
expanded as:

yi,k =

Hj1xk + vj1,k −Hj1 x̂
−
i,k

··
Hixk + vi,k −Hix̂

−
i,k

··
Hj|Ωi|

xk+vj|Ωi|
,k−Hj|Ωi|

x̂−
i,k

x̂−
j1,k

− xk + xk − x̂−
i,k

...
...

x̂−
j|Ωi|,k

− xk + xk − x̂−
i,k


=



Hj1

··
Hi

··
Hj|Ωi|

0n×n

...
...

0n×n


︸ ︷︷ ︸

H̃i

ϵ−i,k+



vj1,k

··
vi,k

··
vj|Ωi|

,k

ϵ−i,k − ϵ−j1,k
...
...

ϵ−i,k−ϵ
−
j|Ωi|,k


︸ ︷︷ ︸

δi,k

where, H̃i ∈ R
(∑

j∈Ωi
pj+n|Ωi|

)
×n are the local innovation

matrices and the δi,k ∈ R
∑

j∈Ωi
pj+n|Ωi| are the local innova-

tion noises at each agent i. In compact notation, the dynamics
of the local innovations are represented by,

yi,k = H̃iϵ
−
i,k + δi,k, ∀i, k ≥ 0. (18)

The local innovation noises δi,k are Gaussian random vectors
with zero mean and let the variance be denoted by ∆i,k, i.e.,
δi,k ∼ N (0,∆i,k). Using the equations (1), (7), (14) and (18)
on the predictor and filter errors (16) and (17), their dynamics
take the form:

ϵ−i,k = Fxk−1 +wk−1 − F x̂+
i,k−1 = Fϵ+i,k−1 +wk−1 (19)

ϵ+i,k = xk − x̂−
i,k −Ki,kyi,k = (In −Ki,kH̃i)ϵ

−
i,k −Ki,kδi,k

= (F−Ki,kH̃iF )ϵ+i,k−1+(In−Ki,kH̃i)wk−1−Ki,kδi,k (20)

Given that the predictor and filter errors are zero-mean, the
recursive updates of the evolution of their covariances, (8)
and (11) are derived below.

P−
i,k = E[ϵ−i,kϵ

−T
i,k]=E[(Fϵ+i,k−1+wk−1)(Fϵ+i,k−1+wk−1)

T ]

= FP+
i,k−1F

T +Qk (21)

P+
i,k = E[ϵ+i,kϵ

+T
i,k] = E[(ϵ−i,k −Ki,kyi,k)(ϵ

−
i,k −Ki,kyi,k)

T ]

= P−
i,k −Ki,kΣ

T
x,yi

− Σx,yi
KT

i,k +Ki,kΣyi
KT

i,k

= P−
i,k −Ki,kΣ

T
x,yi

(22)

Note that the expectations of the cross-terms in (21) are zero,
which can be shown by using techniques similar to the ones
presented in [16]. The term E[ϵ−i,kyT

i,k] = Σx,yi
as shown

later in (25). Finally, (22) was obtained by substituting Ki,k

with Σx,yiΣ
−1
yi

.
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Similarly, the error cross covariances P−
ij,k and P+

ij,k,
needed for the optimal gain matrix design, are derived as,

P−
ij,k=E[ϵ−i,kϵ

−
j,k

T ]=E
[
(Fϵ+i,k−1+wk−1)(Fϵ+j,k−1+wk−1)

T
]

= FP+
ij,k−1F

T +Qk (23)

P+
ij,k = E[ϵ+i,kϵ

+T
j,k] = E[(ϵ−i,k −Ki,kyi,k)(ϵ

−
j,k −Kj,kyj,k)

T ]

= P−
ij,k −Ki,kΣ

T
x,yi − Σx,yjK

T
j,k +Ki,kΣyijK

T
j,k. (24)

At iteration k = 0, initialize the estimate and the error
covariances at each agent i with x̂+

i,0 = x0, P+
i,0 = P+

0 ,
P+

ij,0 = P+
0 ∀j ∈ Ωi, and P+

ij,0 = 0n×n ∀j ̸∈ Ωi. For
ease of notation, we denote P+

ii,k and P−
ii,k by P+

i,k and P+
i,k

respectively.
The convergence properties of the distributed estimator (7)-

(11) is determined by the dynamics of the filter and prediction
error processes, (20) and (19). If the error dynamics are asymp-
totically stable, then the error processes have asymptotically
bounded error covariances that in turn guarantee the conver-
gence of the distributed algorithm. Note that if the dynamics
of the filter error processes, ϵ+i,k ∀ i, are asymptotically stable,
then the dynamics of the prediction error processes, ϵ+i,k ∀ i
are also asymptotically stable. That is why the dynamics of
only one of the error processes is typically studied and in this
paper we consider the filter error processes.

For the distributed estimator to converge with bounded
mean-squared error (MSE), the filter error (20) needs to be
asymptotically stable, i.e., the spectral radius of the error’s
dynamics matrix has to be less than one, ρ(F−Ki,kH̃iF ) < 1.
Given that the state-space-network model (1)-(3) satisfies
the Distributed Observability criteria (6), it guarantees that
there exists gain matrices Ki,k at each agent i such that
ρ(F −Ki,kH̃iF ) < 1. This leads to the next section where a
design of the optimal gain matrices are provided.

VI. OPTIMAL GAIN DESIGN

The asymptotic stability of the error dynamics guarantees
convergence of distributed estimation algorithm (7)-(11) and
bounded MSE, but we aim to to design the gain matrices Ki,k

such that the MSE is not only bounded but also minimum.
Since the zero-mean innovation sequences {yi,k}∀i,k≥0

are Gaussian and uncorrelated, they are independent random
vectors. By applying Gauss-Markov theorem on equation (15),
the gain matrices that minimizes the MSE of the filter and
prediction estimates are given by,

Ki,k = Σx,yiΣ
−1
yi , where,

Σx,yi = E[(xk − xk)y
T
i,k] = E[(xk − x̂−

i,k + x̂−
i,k − xk)y

T
i,k]

= E[ϵ−i,ky
T
i,k] = E[ϵ−i,k(H̃iϵ

−
i,k + δi,k)

T ] (25)

= P−
i,kH̃

T
i +Σϵi,δi (26)

and,

Σyi = E[yi,ky
T
i,k] = E[(H̃iϵ

−
i,k + δi,k)(H̃iϵ

−
i,k + δi,k)

T ]

= H̃iP
−
i,kH̃

T
i +∆i,k + H̃iΣϵi,δi +ΣT

ϵi,δiH̃
T
i . (27)

The fact that E[(x̂−
i,k − xk)y

T
i,k] = 0 was utilized to

obtain (25). Now we employ the relations that E[ϵ−i,kvT
j,k] =

0 ∀ j ∈ Ωi, to derive the two covariance quantities Σϵi,δi
and ∆i,k.

Σϵi,δi = E[ϵ−i,kδ
T
i,k]

=

[
0n,pj1

·· 0n,pi ·· 0n,pj|Ωi|

...(P−
i,k−P

−
ij1,k

) · · · (P−
i,k−P

−
ij|Ωi|,k

)

]
(28)

∆i,k = E[δi,kδTi,k]
= blkdiag{blkdiag{Rj,k}j∈Ωi

,
[
[P−

i,k−P−
ji,k−P−

il,k+P−
jl,k]j,l∈Ωi

]
}

(29)

where, blkdiag means a block-diagonal matrix. The only term
left is the innovation cross-covariance, Σyij

, which can be
derived similarly using the steps described above as,

Σyij = E[yi,ky
T
j,k] = E[(H̃iϵ

−
i,k + δi,k)(H̃jϵ

−
j,k + δj,k)

T ]

= H̃iP
−
ij,kH̃

T
j +∆ij,k + H̃iΣϵi,δj +ΣT

ϵj ,δiH̃
T
j , (30)

Σϵi,δj = E[ϵ−i,kδ
T
j,k]

=

[
0n,p

l1
·· 0n,pj ··0n,pl

|Ωj |

...(P−
i,k−P−

il1 ,k) · · · (P
−
i,k−P−

il|Ωj |
,k)

]
(31)

∆ij,k = E[δi,kδTj,k] (32)
= blkdiag{blkdiag{Rql,k}q∈Ωi,l∈Ωj

,[[
P−

q,k − P−
ql,k − P−

lq,k + P−
l,k

]
q∈Ωi,l∈Ωj

]
}. (33)

Since the observation noises vi,k are uncorrelated across
different agents, Rql,k = Rq,k when q = l, otherwise
Rql,k = 0, ∀q ̸= l. With Σϵi,δi and ∆i,k from (28)-(29),
the optimal gain matrices for the distributed estimator at each
agent turns into:

Ki,k =
(
P−

i,kH̃
T
i +Σϵi,δi

)(
H̃iP

−
i,kH̃

T
i +∆i,k + H̃iΣϵi,δi

+ΣT
ϵi,δiH̃

T
i

)−1

(34)

Note that the gain matrices will be very sparse at each agent.
To alleviate challenges in tracking of the complete network
error covariances, [37] presents a certifiable optimal distributed
filter that performs optimal fusion of estimates under unknown
correlations by a particular tight Semidefinite Programming
(SDP) relaxation. Further, given that the matrices does not
depend on the measurements, they all can be pre-computed
and stored at each agent.

Combining equations (21) and (22), we get

P+
i,k = FP+

i,k−1F
T +Qk −Ki,kΣ

T
x,yi

(35)

Equation (35), once substituted with (26)-(34) to express in
terms of system parameters, will yield a recursive iteration
of the filter error covariance matrix which is the distributed
version of the discrete algebraic Riccati equation for the
proposed distributed estimation algorithm.

Under the distributed observability Assumption 1, the Ric-
cati equation has an asymptotic solution at each agent which
is positive definite when started with a symmetric positive
semi–definite matrix. This solution, which we will designate
by P+

i,∞ is the fixed point of equation (35). For the linear time
invariant problems (assuming distributed observability), the
steady state filter is asymptotically stable ρ(F −Ki,∞H̃iF ) <
1, i.e., the closed loop filter matrix F − Ki,∞H̃iF has all
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poles inside the unit circle, regardless of F being or not
asymptotically stable. To save on the storage burden, the
steady state gain matrix Ki,∞ could be used at each agent i
for all the iterations. This may not yield distributed estimates
with minimum MSE, but will certainly provide estimates with
bounded MSE.

VII. CONCLUSIONS

The primary contributions of this paper are: (i) providing a
novel and meaningful definition for distributed observability;
(ii) introducing a new class of distributed state estimation
algorithm that treats consensus on neighbors’ estimates as
innovations; and (iii) designing the gain matrices for the
distributed estimator such that the algorithm is optimal, i.e., it
yields minimum MSE estimates at all agents. The algorithm,
derivations and error analyses presented in this paper resolves
most of the challenges related to convergence and optimality
of distributed state estimation. The methodologies proposed
in this paper have the potential to serve as the backbone
for several downstream research challenges including sensor
placement in a multi-agent network, adaptation to node or
communication failures and other related research problems.
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[29] Subhro Das and José M. F. Moura, “Distributed linear estimationof
dynamic random fileds,” in 51st Annual Allerton Conference on
Communication, Control, and Computing, 2013, pp. 1120–1125.
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