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ABSTRACT
In this paper, we consider decentralized optimization prob-
lems where agents have individual cost functions to mini-
mize subject to subspace constraints that require the min-
imizers across the network to lie in low-dimensional sub-
spaces. This constrained formulation includes consensus
optimization as special case, and allows for more general
task relatedness models such as multitask smoothness and
coupled optimization. In order to cope with communication
constraints, we propose and study a quantized differential
based approach where the communicated estimates among
agents are quantized. The analysis shows that, under some
general conditions on the quantization noise, and for suffi-
ciently small step-sizes µ, the strategy is stable in the mean-
square error sense. The analysis also reveals the influence of
the gradient and quantization noises on the performance.

Index Terms—Decentralized stochastic optimization, sub-
space projection, quantization effects.

I. INTRODUCTION
Mobile phones, wearable devices, and autonomous vehi-

cles are examples of modern distributed networks generating
massive amounts of data each day. Due to the growing
computational power in these devices and the increasing
size of the datasets, coupled with concerns over sharing
private data, federated and decentralized training of statisti-
cal models have become desirable and often necessary [1]–
[7]. In these approaches, each participating device (which is
referred to as agent or node) has a local training dataset,
which is never uploaded to the server. Training data is
kept locally on users’ devices, and the devices are used
as agents performing computation on their local data in
order to update global models of interest. In applications
where communication to a server becomes a bottleneck,
decentralized topologies (where agents only communicate
with their neighbors) are potential alternatives to federated
topologies (where a server connects with all remote devices).
Decentralized implementations can reduce the high commu-
nication cost on the central server since, in this case, model
updates are exchanged between agents without relying on a
central coordinator [5]–[8].

There have been significant works in the literature on solv-
ing optimization and inference problems in a decentralized
manner [5]–[19]. However, with some exceptions [8], [12]–

[19], the large majority of these works is not tailored to
the specific challenge of limited communication capabilities
(due to tight energy and bandwidth constraints) encountered
in decentralized settings. In this work, we study the effects
of quantization on the performance of the following decen-
tralized stochastic gradient approach that has been recently
proposed and studied in [10], [11]:

ψk,i = wk,i−1 − µ∇̂wk
Jk(wk,i−1)

wk,i =
∑
`∈Nk

Ak`ψ`,i

(1a)

(1b)

where µ > 0 is a small step-size parameter, Nk is the
neighborhood set of agent k (i.e., the set of nodes connected
to agent k by a communication link or edge), Ak` is an
Mk ×M` matrix associated with the link (k, `), wk ∈ RMk

is the parameter vector at agent k, and Jk(wk) : RMk → R
is a differentiable convex cost associated with agent k. It
is expressed as the expectation of some loss function Lk(·)
and written as Jk(wk) = ELk(wk;yk), where yk denotes
the random data (throughout the paper, random quantities
are denoted in boldface). The expectation is computed over
the data. In the stochastic setting, when the distribution of
the data yk is unknown, the risks Jk(·) and their gradients
∇wk

Jk(·) are unknown. In this case, and instead of using the
true gradient, it is common to use approximate gradient vec-
tors by using ∇̂wk

Jk(wk) = ∇wk
Lk(wk;yk,i) where yk,i

represents the data observed at iteration i [5]. We note that
a unique feature of algorithm (1) is the utilization of matrix
valued combination weights, as opposed to scalar weighting
as is commonly employed in conventional consensus and
diffusion optimization [5], [9]. As explained in the following,
this generalization allows the network to solve a broader
class of multitask optimization problems beyond classical
consensus.

Let N denote the total number of agents and let W =
col{w1, . . . , wN} denote the collection of parameter vectors
from across the network. Let A denote the N × N block
matrix whose (k, `)-th block is Ak` if ` ∈ Nk and 0 other-
wise. It was shown in [10, Theorem 1] that, for sufficiently
small µ and for a combination matrix A satisfying:

AU = U , U>A = U>, and ρ(A−PU) < 1, (2)

where ρ(·) denotes the spectral radius of its matrix argument,

1851ISBN: 978-1-6654-6798-8 EUSIPCO 2022



U is an M ×P full-column rank matrix (with P �M ) that
is assumed to be semi-orthogonal (U>U = IP ), and PU is
the orthogonal projection matrix onto Range(U), strategy (1)
will converge in the mean-square-error sense to the solution
of the following problem:

Wo = arg min
W

Jglob(W) ,
N∑
k=1

Jk(wk)

subject to W ∈ Range(U)

(3)

In particular, it was shown that lim supi→∞ E‖wok −
wk,i‖2 = O(µ) for all k, where wok is the k-th Mk × 1
subvector of Wo. As explained in [10, Sec. II], by prop-
erly selecting U and A, strategy (1) can be employed
to solve different decentralized (single-task and multitask)
optimization problems such as consensus optimization [5],
[9], decentralized coupled optimization [10], and multitask
inference under smoothness [10].

The first step (1a) in algorithm (1) is the self-learning step
corresponding to the stochastic gradient descent step on the
individual cost Jk(·). This step is followed by the social
learning step (1b) where agent k receives the intermediate
estimates {ψ`,i} from its neighbors ` ∈ Nk and combines
them through {Ak`} to form wk,i, which corresponds to the
estimate of wok at agent k and iteration i. To alleviate the
communication bottleneck resulting from the exchange of
the intermediate estimates among agents over many itera-
tions, quantized communication can be considered. In this
paper, we study the effect of quantization on the convergence
properties of the decentralized learning approach (1). First,
we propose in Sec. II a differential quantization based
algorithm for solving problem (3), and then we establish
in Sec. III that, under some general conditions on the
quantization noise, and for sufficiently small step-sizes µ, the
proposed decentralized quantized approach is stable in the
mean-square error sense. Our analysis reveals explicitly the
influence of the gradient and quantization noises on the net-
work performance. The analysis also shows that, by properly
designing the quantization operator, the iterates generated by
the quantized decentralized adaptive implementation can still
lead to small estimation errors on the order of µ.

II. DECENTRALIZED LEARNING IN THE
PRESENCE OF QUANTIZED COMMUNICATIONS

Motivated by the approaches proposed in [8], [15]–[19],
we equip strategy (1) with a quantization mechanism by
proposing the following decentralized learning approach:

ψk,i = wk,i−1 − µ∇̂wk
Jk(wk,i−1)

φk,i = φk,i−1 +Qk(ψk,i − φk,i−1)

wk,i = ζφk,i + (1− ζ)
∑
`∈Nk

Ak`φ`,i

(4a)

(4b)

(4c)

where ζ ∈ (0, 1) and Qk(·) is the quantization operator (a
map from real valued vectors to a finite set of quantized
vectors) at agent k. Differential quantization is used. In

this case, instead of communicating compressed versions
of the estimates ψk,i, the prediction error ψk,i − φk,i−1
is quantized at agent k and then transmitted [8], [15]–
[19]. At each iteration i, agent k performs quantization
by mapping the real-valued vector ψk,i − φk,i−1 into a
quantized vector ψ′k,i = Qk(ψk,i − φk,i−1), sends ψ′k,i
to its neighbors through the communication links, receives
{ψ′`,i} from its neighbors ` ∈ Nk, and computes {φ`,i}
according to step (4b):

φ`,i = φ`,i−1 +ψ′`,i, ` ∈ Nk. (5)
Observe that implementing (5) requires storing the previous
estimates {φ`,i−1}`∈Nk

by agent k. The reconstructed vec-
tors {φ`,i} are then combined according to (4c) to produce
the estimate wk,i.

We shall analyze algorithm (4) under the following general
assumption on the quantizers {Qk(·)}, which relaxes the
condition on the mean-square error from [3], [8], [15]–[18].

Assumption 1. The quantizers {Qk(·)} are random and
satisfy: E[xk −Qk(xk)|xk] = 0, (6)

E[‖xk −Qk(xk)‖2|xk] ≤ β2
z,k‖xk‖2 + σ2

z,k, (7)

for some β2
z,k ≥ 0, σ2

z,k ≥ 0, and where the expectations
are evaluated w.r.t. the randomness of Qk(·). When xk is
random, the quantizer is statistically independent of xk.

Note that the conditions in Assumption 1 are satisfied
by many random quantization operators of interest in de-
centralized learning such as the the rand-k and dit-k quan-
tizers [17]. While many existing works focus on studying
decentralized learning approaches in the presence of random
quantizers that satisfy the unbiasedness condition (6) and the
variance bound condition (7) with the absolute noise term
σ2
z,k = 0 [3], [8], [15], [16], the analysis in the current work

is general and does not require σ2
z,k to be zero. As explained

in [19], neglecting the effect of σ2
z,k requires that some

quantities (e.g., the norm of the vector to be quantized [8])
are represented with no quantization error, in practice at
the machine precision. In the following, we illustrate how
a finite-bit random quantizer Qk(·) satisfying conditions (6)
and (7) can be designed.
Example 1 (Randomized quantizer [19]): Given a scalar ξ,
and two design parameters ω ∈ [0, 1) and η > 0, the
quantized value Q(ξ) is computed as follows:

j =


ln
(

1 + ω
η |ξ|

)
2 ln

(
ω +
√

1 + ω2
)
 (8a)

qj =
η

ω

[(
ω +

√
1 + ω2

)2j
− 1

]
(8b)

q =


qj−1 with probability qj−|ξ|

qj−qj−1

qj with probability ξ−qj−1

qj−qj−1

(8c)

Q(ξ) = q · sign(ξ) (8d)
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Step (8a) is a rounding operation, which when coupled with
step (8b), produces a reproduction level of the quantizer.
Step (8c) exploits probabilistic quantization and selects ran-
domly one of the nearest quantization points so as to guar-
antee the unbiasedness condition E[Q(ξ)] = ξ. Finally, step
(8d) is used to handle negative inputs in a symmetric way.
Vector-valued inputs x ∈ RL are quantized component-wise
according to the rule (8). Note that the design parameters ω
and η in (8) are used to tune the degree of non-uniformity
and the resolution of the quantizer. It is shown in [19] that
the quantizer (8) satisfies Assumption 1 with σ2

z,k = 2Lη2

and β2
z,k = 2ω2. Observe that the described quantizer would

require an infinite number of bits since the quantization range
is unbounded. To overcome this issue, we can resort to a
variable-rate scheme that uses a different number of bits
depending on the value x to be quantized. To this aim, let us
consider an encoder alphabet S

⋃
{s0}, where S is a certain

alphabet with |S| ≥ 2, and s0 is a special symbol reserved
to parse the received encoded string. Given a sequence of
samples x1, x2, . . . , the variable-rate encoder: i) determines
the number of symbols in S necessary to represent index j
in (8a); ii) adds the special symbol s0 to denote termination
of the information string; and iii) repeats the procedure
on x2, x3, and so on. A strategy to implement this type
of variable-rate quantizer is proposed in [19]. While the
number of bits required to encode x ∈ RL can be evaluated
numerically (as we will do in the simulations), the following
upper bound on the number of bits is derived in [19]:

B(x) = M log2(S + 1)

×

3 + logS

2 +
ln
(

1 + ω
η
‖x‖√
L

)
2 ln

(
ω +
√

1 + ω2
)
 . (9)

III. STOCHASTIC PERFORMANCE ANALYSIS
We analyze strategy (4) with a matrix A satisfying (2) by

examining the average squared distance between wk,i and
wok, namely, lim supi→∞ E‖wok − wk,i‖2, under Assump-
tion 1 and the following assumptions on the risks {Jk(·)}
and on the gradient noise processes {sk,i(·)} defined as [5]:

sk,i(w) , ∇wk
Jk(w)− ∇̂wk

Jk(w). (10)
Assumption 2. The individual costs Jk(wk) are assumed to
be twice differentiable and convex such that:

λk,minIMk
≤ ∇2

wk
Jk(wk) ≤ λk,maxIMk

, (11)
where λk,min ≥ 0 for k = 1, . . . , N . It is further assumed
that, for any {wk ∈ RMk} the individual costs satisfy:

0 < λminIP ≤ U>diag
{
∇2
wk
Jk(wk)

}N
k=1
U ≤ λmaxIP ,

(12)
for some positive parameters λmin ≤ λmax.

Assumption 3. The gradient noise process defined in (10)
satisfies for any w ∈ F i−1 and for k = 1, . . . , N :

E[sk,i(w)|F i−1] = 0, (13)

E[‖sk,i(w)‖2|F i−1] ≤ β2
s,k‖w‖2 + σ2

s,k, (14)

for some β2
s,k ≥ 0, σ2

s,k ≥ 0, and where F i−1 denotes the
filtration generated by the random processes {w`,j ,φ`,j} for
all ` = 1, . . . , N and j ≤ i− 1.

Before proceeding, it should be noted that there exist
several useful works in the literature that study decentralized
variations of stochastic gradient descent in the presence
of differential quantization [8], [15]–[18], under different
assumptions on the gradient noise, quantization operator, and
cost functions. For instance, while the works [8], [17], [18]
require strongly convex costs at each agent, the works [15],
[16] relax this assumption by requiring network global strong
convexity. In the current work, condition (12) requires the
costs to be strongly convex in the range space of U . In terms
of consensus optimization, this is equivalent to requiring
global strong convexity, namely,

∑N
k=1∇2

wk
Jk(wk) > 0.

While we also assume global strong convexity, it should
be noted that the analysis of strategy (4) differs from the
analysis conducted in [15], [16] in three different ways.
First, approach (4) uses matrix-valued combination coef-
ficients Ak` instead of scalar valued coefficients ak`. As
we previously explained, this generalization allows us to
solve general constrained problems of the form (3). Second,
instead of using the damping coefficient ζ in the quantization
step (4b) as in [15], [16], it is used in the social learning
step (4c). Consequently, under Assumption 1, the network
quantization error vector zi (defined in (28)), which collects
the individual quantization error vectors, will be zero mean
in the subsequent analysis. Third, and unlike the previous
works [8], [15]–[18], the current analysis is conducted in
the presence of the absolute noise term σ2

z,k.

Theorem 1. (Network mean-square-error stability) Con-
sider a network of N agents running the quantized de-
centralized strategy (4) with a matrix A satisfying (2). Let
1 − ζ = O(µγ) with γ ∈ (0, 0.5). Under Assumptions 1, 2,
and 3, the network is mean-square-error stable for suffi-
ciently small step-size µ, namely, it holds that:

lim sup
i→∞

E‖wok −wk,i‖2 =

β2
z,maxO(µ1−γ) + σ2

sO(µ) + ϕ2O(µ) + σ2
zO(µ−1),

(15)

for k = 1, . . . , N and where

σ2
s ,

N∑
k=1

(
2β2

s,k‖wok‖2 + σ2
s,k

)
, β2
z,max, max

1≤k≤N
{β2

z,k},

σ2
z ,

∑N
k=1 σ

2
z,k, and ϕ2 is a term that depends on β2

z,max

and ‖b‖2 = O(1) where the vector b is given by (17).

Proof. Let w̃k,i = wok−wk,i, ψ̃k,i = wok−ψk,i, and φ̃k,i =
wok−φk,i. Using similar arguments as in [10], we can show
that the vector ψ̃i = col{ψ̃k,i}Nk=1 evolves according to:

ψ̃i = (IM − µHi−1) W̃i−1 − µsi + µb, (16)
where
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b , col {∇wk
Jk(wok)}Nk=1 , (17)

si , col {sk,i(wk,i−1)}Nk=1 , (18)

Hi−1 , diag {Hk,i−1}Nk=1 , (19)

with Hk,i−1 ,
∫ 1

0
∇2
wk
Jk(wok− tw̃k,i−1)dt. By subtracting

wok from both sides of (4c), by replacing wok by ζwok + (1−
ζ)wok, and by using wok =

∑
`∈Nk

Ak`w
o
` [10], we obtain:

w̃k,i = ζφ̃k,i + (1− ζ)
∑
`∈Nk

Ak`φ̃`,i. (20)

From (20), we can show that the network error vector
W̃i−1 = col{w̃k,i−1}Nk=1 evolves according to:

W̃i−1 = ζφ̃i−1 + (1− ζ)Aφ̃i−1, (21)

where φ̃i = col{φ̃k,i}Nk=1. By subtracting wok from both
sides of (4b) and by adding and subtracting wok to the
difference ψk,i − φk,i−1, we can write:

φ̃k,i = φ̃k,i−1 −Qk(φ̃k,i−1 − ψ̃k,i). (22)

Let δk,i = φ̃k,i−1 − ψ̃k,i. By introducing the quantization
error vector:

zk,i(δk,i) , δk,i −Qk(δk,i), (23)

we can write:

φ̃k,i = ψ̃k,i + zk,i(δk,i). (24)

By using (16)–(24), we can show that the network error
vector φ̃i evolves according to the following dynamics:

φ̃i = Bi−1φ̃i−1 − µsi + µb+ zi (25)

where
Bi−1 , (IM − µHi−1)A′, (26)

A′ , ζIM + (1− ζ)A, (27)

zi , col {zk,i(δk,i)}Nk=1 . (28)

For a semi-orthogonal U , the matrix A satisfying the
conditions in (2) has a Jordan decomposition of the form
A = VεΛεV−1ε with [10, Lemma 2]:

Vε =
[
U VR,ε

]
, Λε =

[
IP 0
0 Jε

]
, V−1ε =

[
U>
V>L,ε

]
,

(29)
where Jε is a Jordan matrix with eigenvalues λ (which may
be complex but have magnitude less than one) on the diago-
nal and ε > 0 on the first lower sub-diagonal. Consequently,
the matrix A′ in (27) has a Jordan decomposition of the form
A′ = VεΛ′εV−1ε where

Λ′ε =

[
IP 0
0 J ′ε

]
, with J ′ε , ζIM−P+(1−ζ)Jε. (30)

It can be shown that, for ε small enough, ‖J ′ε‖ ∈ (0, 1). In
fact, the block diagonal matrix J ′ε , which is given by (30)
satisfies:

‖J ′ε‖2 ≤ (ρ(J ′ε ) + (1− ζ)ε)2. (31)

Using the fact that ρ(Jε) ∈ (0, 1) and ζ ∈ (0, 1), we obtain
ρ(J ′ε ) ∈ (0, 1). We can also show that ρ(J ′ε ) ≤ ζ + (1 −
ζ)ρ(Jε), which implies that ρ(J ′ε ) ∈ (ζ, 1) and that:

‖J ′ε‖ ≤ ζ + (1− ζ)ρ(Jε) + (1− ζ)ε

= 1− (1− ζ)(1− ρ(Jε)− ε)
(32)

By multiplying both sides of (25) by V−1ε and by parti-
tioning the transformed iterate V−1ε φ̃i into col{φi, qφi} with
φi = U>φ̃i and qφi = V>L,εφ̃i, we obtain:

φi = (IP −D11,i−1)φi−1 −D12,i−1qφi−1 + zi − si (33)
qφi = (J ′ε −D22,i−1)qφi−1 −D21,i−1φi−1 + qzi + qb− qsi

(34)

where si , µU>si, zi , U>zi, qsi , µV>L,εsi, qzi ,

V>L,εzi, qb = µV>L,εb, and:

D11,i−1 , µU>Hi−1U , D12,i−1 , µU>Hi−1VR,εJ ′ε ,
D21,i−1 , µV>L,εHi−1U , D22,i−1 , µV>L,εHi−1VR,εJ ′ε ,

and where we used the fact that U>b = 0 as shown in [10].
Using similar arguments as in [5, Theorem 9.1] and [10,

Theorem 1], we can show that, under Assumptions 1, 2,
and 3, when 1− ζ = O(µγ) with γ ∈ (0, 0.5), the variances
of φi and qφi are coupled and recursively bounded as:[

E‖φi‖2

E‖qφi‖2

]
� Γ

[
E‖φi−1‖2

E‖qφi−1‖2

]
+

[
e+ v21σ

2
z

f + v21σ
2
z

]
(35)

where Γ is a stable matrix given by:

Γ =

[
a b
c d

]
(36)

with v1 = ‖V−1ε ‖, a = 1−O(µ), b = O(µ2γ), c = O(µ2−γ),

d = ‖J ′ε‖+β2
z,max ·O(µ2γ) +O(µ2−γ) = 1−O(µγ)

e = O(µ2−γ) · β2
z,max +O(µ2) · σ2

s

f = O(µ2−γ) · ϕ2 +O(µ2) · σ2
s .

The ϕ2-term depends on the bias (‖b̌‖/µ)2 and β2
z,max. It

follows that,

lim sup
i→∞

[
E‖φi‖2

E‖qφi‖2
]
�[

β2
z,maxO(µ1−γ) + σ2

sO(µ) + ϕ2O(µ) + σ2
zO(µ−1)

β2
z,maxO(µ3−3γ) + σ2

sO(µ2−γ) + ϕ2O(µ2(1−γ)) + σ2
zO(µ−γ)

]
(37)

Using (21) and the fact that A′ = VεΛ′εV−1ε , we can write:

lim sup
i→∞

E‖W̃i‖2 ≤ lim sup
i→∞

‖Vε‖2[E‖φi‖2+E‖qφi‖2]. (38)

Combining (37) and (38), we obtain (15). The proof of (35)–
(37) is omitted due to space limitations.

Expression (15) reveals the influence of the step-size µ,
the relative quantization noise term (captured by β2

z,max),
the absolute quantization noise term (captured by σ2

z ), and
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Fig. 1. (Left) Link matrix. (Right) Performance of (4) when
quantizers (8) are used with β2

z,k = 0 (solid curve) and
β2
z,k 6= 0 (dashed curve).

the gradient noise term (captured by σ2
s ), on the steady-state

mean-square error. Several conclusions can be drawn from
our analysis. For instance, if the quantizers are designed
such that β2

z,k = O(µγ) and σ2
z,k = O(µ2), we obtain

lim supi→∞ E‖wok−wk,i‖2 = O(µ). This means that, com-
pared with (1), approach (4) can reduce the communication
cost whilst still ensuring small estimation errors on the order
of µ. Furthermore, in the absence of the absolute noise, i.e.,
when σ2

z = 0, small estimation errors of O(µ) can also be
ensured by choosing γ small enough.

IV. SIMULATION RESULTS
We apply strategy (4) to a network of N = 50 nodes,

generated randomly with the link matrix shown in Fig. 1
(left). Each agent is subjected to streaming data {dk(i),uk,i}
assumed to satisfy a linear regression model of the form
dk(i) = u>k,iw

?
k + vk(i) for some unknown L × 1 vector

w?k with vk(i) denoting a zero-mean measurement noise
and L = 5. The processes {uk,i,vk(i)} are generated
using similar settings as in [11, Sec. IV]. The signal W? =
col{w?1 , . . . , w?N} is generated by smoothing a signal Wo
with τ = 2 and Wo randomly generated from the Gaussian
distribution N (0.2 × 1NL, INL)–see [11, Sec. IV]. The
matrix U is generated according to U = U ⊗ IL (U is
chosen as the first two eigenvectors of the graph Laplacian).
We use randomized quantizers of the form (8). We set the
absolute noise parameter σ2

z,k = µ2 ∀k, and 1−ζ = µ
1
45 . We

report the network MSD learning curves 1
N

∑N
k=1 E‖w̃k,i‖2

in Fig. 1 (right) for 3 different values of the step-size µ. The
results are averaged over 100 Monte-Carlo runs. Solid curves
refer to the case β2

z,k = 0, whereas dashed curves refer to the
case where β2

z,k = Cβ ·µγ , with the constant Cβ chosen such
that β2

z,k = 0.25 when µ = 0.01. In each case, we report
the average number of bits per agent/dimension/iteration. By
comparing solid and dashed curves, we observe that, for a
fixed value of σ2

z,k, setting the compression parameter β2
z,k

to a non-zero value allows for reducing the number of bits,
at the expense of an increase in the steady-state MSD.
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