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Abstract—Given a network of N static nodes in D-dimensional
space and the pairwise distances between them, the challenge
of estimating the coordinates of the nodes is a well-studied
problem. However, for numerous application domains, the nodes
are mobile and the estimation of relative kinematics (e.g., position,
velocity and acceleration) is a challenge, which has received
limited attention in literature. In this paper, we introduce a
time-varying Grammian-based data model for estimating the
relative kinematics of mobile nodes with polynomial trajectories,
given the time-varying pairwise distance measurements between
the nodes. Furthermore, we consider a scenario where the
nodes have on-board accelerometers, and extend the proposed
data model to include these accelerometer measurements. We
propose closed-form solutions to estimate the relative kinematics,
based on the proposed data models. We conduct simulations
to showcase the performance of the proposed estimators, which
show improvement against state-of-the-art methods.

Index Terms—relative kinematics, Euclidean distance matrices,
mobile nodes, accelerometer, joint estimation.

I. INTRODUCTION

The problem of estimating the position coordinates of N
points, in D-dimensional space, given a dissimilarity measure,
has a long history in scientific literature [1]–[4]. If these
dissimilarities are represented by Euclidean Distance Matrices
(EDMs), then Multidimensional scaling (MDS) can be em-
ployed to estimate the relative positions of the N points. Given
the pairwise distances between nodes, various estimators have
been proposed for the relative localization of the nodes in a
network [5]–[7]. However, in numerous applications involving
motion systems, such as robot swarms [8], the nodes are
mobile and measurements of pairwise distances between these
nodes are available over time. In such cases, it is useful to
model this time dependency in order to understand the under-
lying relative kinematics of the nodes, particularly in networks
where position references (or anchors) are unavailable.

To the best of our knowledge, the earliest work on time-
varying Euclidean distance measurements was proposed in
[9], [10], where the authors presented a systematic way
of estimating higher-order relative kinematics for a network
of mobile nodes from time-varying distance measurements,
where each node has a polynomial trajectory in time. However,
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to uniquely estimate the relative kinematics, additional rigid-
body constraints are required. More recently, a Grammian-
based approach for recovering trajectories from time-varying
pairwise distances was proposed [11], using spectral factoriza-
tion methods. However, the proposed solutions require anchor
measurements.

In this paper, we aim to estimate the relative kinematics of
a network of mobile nodes given the time-varying pairwise
distances measurements without any apriori knowledge of
anchor nodes or references in the network. The main advantage
of the proposed algorithm over the state-of-the-art in [10] is
that it does not require additional rigid body constraints to be
solved uniquely. To this end, in Section III, we propose an
alternative formulation to the data model presented in [10]. In
Section IV, we modify the derived data model to incorporate
accelerometer measurements under certain assumptions. We
conduct simulations and present the results in Section V,
which show the benefits of the proposed solutions.

Notation: Lower case alphabets, e.g., a, represents scalars
and bold-faced lower case letters, e.g., a, denote a column
vector. A bold capital letter, e.g., A, indicates a matrix
and calligraphic letters e.g., Ap¨q represent matrices that are
explicitly shown to be a function of a vector or another
matrix. Half-vectorization of a symmetric matrix A is denoted
by vechpAq, and a simple vectorization is represented by
vecpAq. The symbol b denotes a Kronecker product. A vector
and matrix of real-valued entries are denoted by RN and
RMˆN , respectively. A column vector of ones with length N
is denoted by 1N , and the l2-norm is denoted by ‖¨‖. Given
a positive semidefinite matrix, D P RNˆN , constructed using
an underlying point set X P RDˆN , an estimate of the point
set using classical Multidimensional scaling (MDS), is given
by

Fmds pD,Xq fi arg min
X

∥∥D´XT X
∥∥ s.t. rankpXq “ D

“ Λ1{2 VT (1)

where Λ contains the first D non-zero Eigenvalues of D, and
V contains the corresponding Eigenvectors [12].

II. PRELIMINARIES

Consider a system of N mobile nodes in D-dimensional
Euclidean space, whose trajectory can be modelled as an L`
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1th order polynomial in time t , i.e., Sptq “
řL

l“0 pl!q
´1

Yl t
l

where Sptq P RDˆN is the polynomial trajectory as a function
of time t [10]. Furthermore, we define the lth order derivative
of this polynomial as Yl “ S

plq
ptq|t“0 P RDˆN , for l P

t0, 1, . . . , Lu, which are assumed to be finite. We define the
time-varying Euclidean Distance Matrix (EDM) of the network
as

Dptq fi 1N diagpGptqqT ´ 2 Gptq ` diagpGptqq 1T
N (2)

where Gptq fi SptqT Sptq P RNˆN is the time-varying
Grammian. The position coordinates at time instant tk is given
as Xk fi Sptq|t“tk , and the acceleration :Xk is obtained by
twice differentiating Sptq w.r.t. time i.e.,

:Xk “
B2Sptq

Bt2

ˇ

ˇ

ˇ

t“tk
“

L
ÿ

l“2

ppl ´ 2q!q
´1

Yl t
l´2
k . (3)

Now, the time-varying position and acceleration coordinates
centered at the origin at time tk is given by

Xk “

L
ÿ

l“0

pl!q
´1

Yl t
l
k (4a)

:Xk “

L´2
ÿ

l“2

ppl ´ 2q!q
´1

Yl t
l´2
k (4b)

where Yl fi Yl C P RDˆN and C “ IN ´ N´11T
N1N

is the centering matrix [2]. The Grammian for the centered
coordinates Xk at time tk, denoted by Gk P RNˆN , can be
calculated by double centering the EDM from (2) at time tk,
yielding,

Gk “ ´
1

2
C Dk C “

1

2
C

´

2 X
T

k Xk

¯

C “ XT
k Xk (5)

where Dk P RNˆN denotes the EDM at time instant tk. Using
(4) for Xk, the Grammian, Gk (5), can be rewritten as

Gk “ B0 `B1 tk `B2 t
2
k ` . . .`BL t

L
k (6)

where

Bl “

l
ÿ

m“0

pm! pl ´mq!q
´1

YT
m Yl´m. (7)

Given the distances, Dk, we aim to estimate Bl P RNˆN ,
which subsequently yield the relative kinematics Yl for l P
t0, 1, . . . , Lu. In the following section, we propose algorithms
to estimate the relative kinematics, given the distance mea-
surements, which in reality are plagued with noise.

III. PAIRWISE DISTANCES

A. Data Model with only pairwise distances

Vectorizing (6) and using the distributive property of vec-
torization over summation, we get

gk “ b0 ` tk b1 ` t
2
k b2 ` . . .` t

L
k bL (8)

where bl “ vechpBlq P RN , for l P t0, 1, . . . , Lu and gk “

vechpGkq P RN . Here, , N “ NpN ` 1q{2. Without loss
of generality, let qgk “ gk ` ηgk

be the noisy measurement

plagued by additive white Gaussian noise with zero mean and a
known covariance matrix. Stacking the vectorized Grammians
qgk for all K timestamps in column vector qg, we get

T θ “ qg (9)

where T “
“

1K b IN , tb IN , . . . , tdL b IN
‰

, θ “
“

b0, b1, . . . , bL

‰T
, qg “

“

qg0, qg1, . . . , qgK

‰T
. Here,

t is a column vector of time stamps tk. The unknown θ can
then be calculated by solving the following least-squares prob-
lem arg minθ ‖T θ ´ qg‖22 leading to a closed-form solution
given by

pθ “
`

TT T
˘´1

TT
qg (10)

which is an optimal estimator given the assumption of additive
white Gaussian noise on the measurements.

B. Relative Kinematics Estimates

Consider a scenario where the nodes are in constant accel-
eration i.e., Yl “ 0 for l ě 3. From (10), the estimates pBl,
l P t0, 4u can be reconstructed, and subsequently using (7),
the relative position and relative acceleration can be calculated
using classical MDS algorithms [12], i.e.,

pY0 “ Fmds

´

pB0,Y0

¯

(11a)

pY2 “ Fmds

´

4 pB4,Y2

¯

(11b)

where pY0 is the estimate for the centered position coordinates
Y0 at time t “ 0 and pY2 is the estimate of the relative
acceleration centered at the origin. Note that the estimates pY0

and pY2 from the MDS solution in (11) are each known only
up to a rotation, which we denote by H0 and H2 respectively.
We assume the rotation associated with pY0 to be identity, i.e.
H0 “ ID. However, we need to estimate the unknown rotation
corresponding to pY2, given by H2. Now for l P t1, 3u in (7),
Bl take the following Lyapunov-like form

B1 “ YT
0 Y1 `YT

1 Y0 (12a)

2 B3 “ YT
2 Y1 `YT

1 Y2 (12b)

Substituting the estimates of Bl from (10) for l P t1, 3u and
estimates of Y0 and Y2 from (11), we get

pB1 “ pYT
0 Y1 `YT

1
pY0 (13a)

2 pB3 “ pYT
2 HT

2 Y1 `YT
1 H2

pY2 (13b)

where H2 is the unknown rotation and Y1 is the unknown
relative velocity to be estimated. Note that the individual
Lyapunov-like equations in (13) are under-determined and
require additional constraints to obtain a unique solution [10],
[13]. As one of the contributions of this paper, we propose a
solution to the combined set of equations in (13) for estimating
Y1 and H2, as opposed to the approach in [10].We begin by
rewriting (13),

(

B 1 “
“

Λ0 0
‰T

Z` ZT
“

Λ0 0
‰

(14a)

(

B 3 “
“

Λ2 0
‰T

Z` Z
T “

Λ2 0
‰

(14b)
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where Z fi
“

Z1 Z2

‰

“ UT
0 Y1 V0, Z fi

“

Z1 Z2

‰

“

UT
2

`

HT
2 Y1

˘

V2,

(

B 1 “ VT
0
pB1 V0 and

(

B 3 “ VT
2
pB3 V2

[13]. Here Z1,Z1 P RDˆD and Z2,Z2 P RpN´DqˆD.
Furthermore, U0 P RDˆD, V0 P RNˆN and Λ0 P RDˆD

are the respective singular vectors and singular values of pY0.
U2 P RDˆD, V2 P RNˆN and Λ2 P RDˆD are similarly
defined for pY2. Here, Z2 and Z2 can be uniquely determined,
while the D2 ´ D off-diagonal elements of Z1 and Z1 are
unknown [13]. We introduce

z fi vecpZq “ K0 vecpY1q (15a)

z fi vecpZq “ K2 pIN bH2q vecpY1q (15b)

where K0 fi VT
0 bUT

0 and K2 fi VT
2 bUT

2 . Rearranging
the above equation, we get

z “ K2 pIN bH2q K:
0 z (16)

Observe that the number of unknowns in (16) only depends
upon the dimension D, i.e. D2 ´ D unknown elements in z
and DpD ´ 1q{2 elements corresponding to rotation matrix
H2. However, the number of equations in (16) depends on
both D and N and is given by pN ´DqD `D. This proves
useful in defining the number of nodes required to solve (16)
for any dimension D.

Consider the case for D “ 2 and let u P R2 denote the
unknown off-diagonal elements of Z1. We further denote the
unknowns in rotation matrix H2 as h “

“

h1 h2
‰T

where

H2 “

„

h1 ´h2
h2 h1



with the constraint h21 ` h22 “ 1. We can

then rewrite (16) as

S z “ W φpu,hq (17)

where the unknown parameters in H2 and z correspond to
u and h, S is an appropriate selection matrix corresponding
to the known elements of z. Here, φ is a column of linearly
independent scalar basis functions parameterized by unknowns
u and h and W contains the corresponding coefficients. The
problem is uniquely solvable if W is invertible, which is true
for the given case since pB1 and pB3 are typically non-singular.
For the set of basis functions in (17), uniqueness of φpu,hq
also implies uniqueness in its arguments. For D “ 2, the basis
function in (17) is given by

φpu,hq “
“

h1 h2 h1 u1 h1 u2 h2 u1 h2 u2
‰T

(18)

The solution to (17) gives a unique set of basis function,
pφpu,hq. For the given set of basis function in (18), the unique
arguments pu and ph can be calculated as

ph1 “ h1; ph2 “ h2; pu1 “
h1 u1
ph1

; pu2 “
h2 u2
ph2

Hence, uniqueness in φpu,hq implies uniqueness in its ar-
guments, u and h. With the estimate pu, corresponding to
the unknown elements of z, pY1 can be estimated using the
relation in (15). Thus, we have the estimates of relative
velocity pY1, together with the estimates of relative position,
pY0, and relative acceleration, pY2, from (11) at t “ 0.

The aforementioned steps involved in estimating the relative
kinematics is summarised in Algorithm 1.

Algorithm 1 Relative kinematics without accelerometer

1: Input: EDMs, Dk for all tk, k P t0, . . . ,Ku.
2: For all tk, evaluate the Grammian Gk using (5).
3: Estimate Bl from (10).
4: Estimate pY0 and pY2 from (11).
5: Estimate pY1 and rotation H2 using (13).
6: Output: pY0, pY1, pY2 and H2.

IV. PAIRWISE DISTANCES AND ACCELEROMETER

We now consider a scenario where all the nodes have
an accelerometer, and subsequently extend our existing data
model to incorporate these accelerometer measurements. In
the first step, we estimate the polynomial coefficients rYl for
l ě 2 in (4) using the accelerometer measurements as given
by (19). In the second step, we use the estimates from the first
step to modify the data model from (8).

A. Accelerometer measurement model

The accelerometer measurement model for mobile node i
at time tk, is given by

:
rxi,k “ Qi,k :xi,k ` εa,k (19)

where :
rxi,k, :xi,k P RD are the noisy and true acceleration

(centered at the origin) for node i at time tk and Qi,k is the
corresponding rotation matrix associated with the accelerom-
eter at node i. The measurements are accompanied by white
Gaussian noise i.e., εa „ N p0, σ2

aq [14, Chapter 2]. Without
the loss of generality, we assumed a calibrated accelerometer.

Assumption: The data model for fusing the accelerometer
measurements is proposed under the assumption that the mo-
bile nodes are non-rotating. In other words, the accelerometer
readings are measured w.r.t. a non-rotating frame of reference
i.e., Qi,k “ Q P RDˆD, @tk. This is a feasible assumption
for holonomic motion systems. The proposed data model can
be extended to the cases where the orientation of individual
mobile node is distinct and unknown but constant.

Stacking all the accelerometer measurements from all the
N nodes we have

:
rXk “ Q :Xk `Ea,k (20)

where the ith column of :
rXk P RDˆN corresponds to the

accelerometer measurement from node i at time tk, :Xk is
given by (4), and Ea,k represents the stochastic error.

B. Coefficient Estimates from Accelerometer

Under the assumption of non-rotating reference frame for
the accelerometers, the measurements for node i, using (4), is
given by

:
rxk “

L´2
ÿ

l“2

ppl ´ 2q!q
´1

ryl t
l´2
k ` εa,k (22)
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X “

„

´244 385 81 ´19 ´792 ´554 ´965 ´985 ´49 ´503s
´588 ´456 ´992 ´730 879 970 155 318 ´858 419



(21a)

Y1 “

„

´5 ´8 ´6 6 ´1 2 1 ´5 9 ´5
´8 ´5 ´7 ´9 ´3 ´2 ´2 ´10 2 ´1



(21b)

Y2 “

„

´0.17 ´0.42 0.22 ´0.07 0.21 ´0.15 0.55 ´0.72 ´0.49 ´0.34
0.42 0.17 0.98 0.73 0.48 0.08 ´0.43 ´0.14 0.56 0.91



(21c)

Algorithm 2 Relative kinematics with accelerometer

1: Input: Dk and :
rXk for all tk, k P t0, . . . ,Ku.

2: Estimate rYl for l ě 2 using (24).
3: For all tk, evaluate rGk using (25).
4: Estimate rBl from (28).
5: Estimate pY0 as given in (11a).
6: Estimate pY1 and rotation Q using (29).
7: Evaluate pYl “ Q rYl for l ě 2.
8: Output: pY0, pY1, pY2 and Q.

where :
rxk “ vecp

:
rXkq and ryl “ vecpQYlq for l ě 2. Stacking

K timestamps together in a column, we have

qτ “ V α (23)

where V “
“

1K b IND, tk b IND . . . tk
dL´2 b IND

‰

,
α “

“

ry2, ry3, . . . ryL

‰T
, qτ “

“

qτ 0, qτ 1, . . . qτK

‰T

with qτ k “ :
rxkq. The closed form estimate for the

accelerometer coefficients can be obtained by solving
the following least-squares problem arg minα ‖V α´ qτ‖22
leading to

pα “
`

VT V
˘´1

VT
qτ (24)

which is an optimal unbiased estimate of the acceleration
coefficients, ryl, given the noise assumption.

C. Data Model with Accelerometer Measurements

Given estimates rYl, l ě 2 are available from (24), the
formulation in (6) can be modified such that

rGk “ rB0 ` rB1 tk ` rB2 t
2
k ` . . .`

rBL´1 t
L´1
k (25)

where rBl “
řl

m“0;m‰l,@lą2 pm! pl ´mq!q
´1

rYT
m

rYl´m for
l P t0, 1, . . . , L ´ 1u and rGk “ Gk ´

řL
l“2 pl!q

´2
rYT
l

rYl.
Here, we define rYl “ Yl for l ď 1. Vectorizing (25), we get

rrk “ rb0 ` tk rb1 ` t
2
k
rb2 ` . . .` t

L
k
rbL´1 (26)

where rbl “ vechprBlq, for l P t0, 1, . . . , L ´ 1u and rrk “

vech
´

rGk

¯

. Without loss of generality, let qrk “ rrk ` ηr be
the noisy measurement plagued by additive white Gaussian
noise with covariance matrix Σrk . Stacking all K timestamps
in column vector qr, (26) can be extended as,

rT rθ “ qr (27)

where rT “
“

1K b IN , tb IN , . . . , tdL´1 b IN
‰

, rθ “
”

rb0, rb1, . . . , rbL´1

ıT

and qr “
“

qr0, . . . , qrK
‰T

.
Again, using the closed form solution for the least-squares

problem arg min
rθ

∥∥∥rT rθ ´ qr
∥∥∥2
2
, we have

p

rθ “
´

rTT
rT
¯´1

rTT
qr (28)

which again is an optimal estimator under additive white
Gaussian noise assumption on the measurements. The relative
position estimate at time t “ 0 can be calculated by solving
for Y0 in (11a). As noted in (22), the estimate rY2 from (24)
has an unknown rotation Q corresponding to the non-rotating
accelerometer frame that needs to be estimated. Hence, to
estimate the remaining unknowns, Y1 and Q, consider the
following set of equations

pB1 “ pXT
0 Y1 `YT

1
pX0 (29a)

2 rB3 “
p

rYT
2 QT Y1 `YT

1 Q
p

rY2 (29b)

which can be solved for Y1 and Q using the solving
scheme introduced in section III-B. Algorithm 2 summarizes
the intermediate steps as laid out in this section.

V. SIMULATION

Fig. 1: RMSE for the coefficient estimates Bi, i P t0, 1, 2u in
(10) for the case without accelerometer and (28) for the case
with accelerometer, σd “ 0.01m and σa “ 0.001m{s2
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(a) RMSE on the relative kinematic estimates
for varying K

(b) RMSE on the time-varying positions under
constant acceleration for varying K

Fig. 2: a) Root-mean square error for relative position, relative
velocity and relative acceleration at t “ 0 for varying K. b)
Root-mean square error for position measurements over time.
For both plots, σd “ 0.01m and σa “ 0.001m{s2

For the simulation setup, consider a scenario with N “ 10
mobile nodes in D “ 2 dimensions, whose position, velocity
and acceleration are given in (21) [10]. The noise in the mea-
surements, pairwise distance and accelerometer, are modelled
as zero-mean Gaussian noise with a standard deviation of
σd “ 0.01 m and σa “ 0.001 m{s2 respectively. A total
of Nexp “ 1000 Monte-Carlo runs were executed, and we
compute the root mean square error for the parameters of in-

terest as RMSEpzq “ N´1
z

ˆ

b

N´1
exp

řNexp
i“1 ‖pzi ´ z‖2

˙

where

z P tvecpy0q, vecpy1q, vecpy2qu P RNz . All the simulations
are performed for a fixed time interval of ∆T “ r´5, 5s
seconds with varying values of K.

Figure 1 compares the estimates of the polynomial coeffi-
cients given in (10) and (28), for the case with and without ac-
celeration respectively, w.r.t. the state-of-the-art in [10] (green
curves). The proposed data model shows a lower root-mean
square error (RMSE) for all the coefficient estimates when
compared to [10]. Moreover, the addition of accelerometer
measurements (red curves) lead to improvements in these

estimates compared to the case when using only pairwise
distances (blue curves). In addition to these improvements, the
estimation of relative kinematics in [10] involving polynomial
trajectories of order 2 or more requires additional rigid-body
constraints, which is not the case for our proposed approach,
due to the solving scheme introduced in Section III.

Figure 2a shows the RMSE for the estimates of the relative
position, velocity and acceleration at time t “ 0 for varying K.
The addition of accelerometer measurements shows significant
improvement when compared to the estimates obtained only
using pairwise distances. This improvement is also seen in
Figure 2b, which shows the RMSE estimates of time-varying
position measurements over time, which is estimated by sub-
stituting the estimated relative kinematics in (4). The proposed
solution is most accurate at t “ 0 and worsens as we move
away because the Taylor approximation gets worse as we move
away from the location where the approximation holds.

VI. CONCLUSIONS

In this paper, we proposed an alternate formulation to the
problem of estimating the relative kinematics given time-
varying pairwise distances between mobile nodes. A solving
scheme is proposed to uniquely obtain the relative kinematic
estimates without the need of additional rigid-body constraints.
We also introduce accelerometer measurements, under the
assumption that the mobile nodes do not rotate and the motion
is holonomic. Our proposed solution outperforms the state of
the art, and the incorporation of accelerometer measurements
considerably improves the relative kinematic estimates.
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