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Abstract—This paper addresses the classification of the operat-
ing scenario in radar applications in terms of data homogeneity.
Specifically, we consider configurations accounting for homoge-
neous, partially-homogeneous, and clutter edge environments.
This is an essential issue since such an information allows us
to derive the most appropriate target detection schemes for the
current scenario. To this end, we resort to a heuristic design
procedure and come up with a classification architecture obtained
by cascading two binary hypothesis tests that are solved by
means of the generalized likelihood ratio test (GLRT) criterion.
At the design stage, we first assume that the rank of the
clutter covariance matrix is known and derive the GLRT, then
we devise a preliminary stage for rank estimation when it is
unknown. Illustrative examples show the effectiveness of both
the preliminary stage and the classification architecture.

I. INTRODUCTION

In the radar context, clutter classification is a relevant issue
to accomplish an effective target detection through suitable
decision rules obtained, for instance, by applying the general-
ized likelihood ratio test (GLRT). A preliminary analysis of the
surrounding environment becomes a crucial objective in radar
systems. The most common design assumption, namely the
homogeneous environment where both the secondary and the
primary data maintain the same clutter properties, is no longer
sufficient to handle a real situation with interactions among
all the backscattered signals due to the multiple propagation
pathways. To reduce unwanted contributions with respect to
the signal of interest containing the target, it is essential to
tackle the clutter correctly and in order to do that, the clutter
characterization is a cumbersome operation. For years the
target detection problem has been carried out through the
classical hypothesis of homogeneous environments, where the
signal of interest was embedded in a Gaussian noise [1]–[6].
Yet, very quickly it has appeared clear that new insights were
necessary and more articulated models have been designed
to take into account partially-homogeneous environments [7]–
[13], with the extension to the case where a Clutter edge is

considered [14].
It is important to notice that, in both of the above mentioned

non-homogeneous situations, the detection schemes devised
under homogeneous assumption might experience significant
performance degradations due to low covariance estimation
quality, and can no longer guarantee the constant false alarm
rate (CFAR) properties. On the other hand, when the power
transitions are negligible, the homogeneous detectors have
to be preferred for their effectiveness and low computation-
al burden. Thus, it would be highly desirable to devise a
classification architecture which is capable of identifying the
real radar working scenarios. As a matter of fact, such a
priori information allows to drive the systems toward the best
choice of detection schemes whose performance is optimized
under the current operating scenario [15]. One of the most
known strategies dealing with the possible heterogeneity and
clutter edges is the Variable Index CFAR algorithm [16], which
is capable of identifying the background by comparing test
statistics with thresholds. In [17], the strategy for clustering
heterogeneous data into homogeneous subsets has been pro-
posed exploiting the Expectation Maximization algorithm [18].
The most recent effort on the background classification in
terms of homogeneity consists in detecting the clutter edge
by means of GLRT criterion [14].

The a priori knowledge of the surrounding environment in
a target-detection radar systems has also inspired the present
work, where a novel classification scheme for radar scenarios
is introduced and discussed. Specifically, we jointly consider
the homogeneous, partially-homogeneous, and the clutter-
edge-present cases. To this end, we come up with a heuristic
architecture which is a cascade of two binary test stages solved
by GLRT. The clutter edge scenario is rejected at the first stage
by understanding the homogeneity of the secondary data, and
at the second stage we classify between the homogeneous and
partially-homogeneous environments resorting to the overall
data set. At the design stage, we first assume that the rank
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of the clutter covariance matrix is known, and then devise an
estimation stage to deal with the case when it is unknown.
Simulations results show the effectiveness of both the rank
estimation stage and the proposed classification architecture.

The remainder of the paper is organized as follows. The
next section contains the problem formulation and preliminary
definitions, whereas Section III is devoted to the design of the
classification architecture. Illustrative examples are provided
in Section IV and we conclude the paper in Section V.

A. Notation

In the sequel, vectors (matrices) are denoted by boldface
lower (upper) case letter. Superscripts (·)T and (·)† denote
transpose and complex conjugate transpose, respectively. We
denote by S(i, j) the (i, j)-th element in the matrix S. Rm×n

and Cm×n are real and complex matrix spaces of dimension
m× n. I stands for an identity matrix of suitable dimension.
CNN (µ,X) denotes the N -dimensional circular complex
Gaussian distribution with mean µ and covariance matrix X .
det(·) represents the determinant of a matrix and the modulus
of a scalar, and Tr(·) denotes the trace of a square matrix.
 =

√
−1 and U(0, 1) the uniformly distributed random

variable on the interval from 0 to 1.

II. PROBLEM FORMULATION AND PRELIMINARY
DEFINITIONS

Consider a radar system equipped with N ≥ 2 space and/or
time channels illuminating the surveillance area. We assume
that the system performs the decision over a set of primary
data [5], [19] denoted by zk ∈ CN×1, k = 1, . . . ,KP ,
corresponding to KP consecutive cells under test (CUTs).
Furthermore, we denote by rk ∈ CN×1, k = 1, . . . ,KS , a
set of secondary data gathered from the leading and lagging
window [20] in the proximity of the CUTs. At the design
stage, all data are assumed IID circularly symmetric complex
Gaussian random vectors with zero mean and positive definite
covariance matrix.

Therefore, the classification problem for the radar scenarios
can be formulated in terms of the following multiple hypoth-
esis test

H0 :

{
zk ∼ CNN (0, σ2I +M), k = 1, . . . ,KP ,
rk ∼ CNN (0, σ2I +M), k = 1, . . . ,KS ,

H1 :

{
zk ∼ CNN (0, σ2I +M), k = 1, . . . ,KP ,
rk ∼ CNN (0, σ2I +M1), k = 1, . . . ,KS ,

H2 :

 zk ∼ CNN (0, σ2I +M), k = 1, . . . ,KP ,
rk ∼ CNN (0, σ2I +M), k = 1, . . . ,K1,
rk ∼ CNN (0, σ2I +M2), k = K1 + 1, . . . ,KS ,

(1)
where σ2I is the thermal noise component with σ2 > 0
the unknown noise power level; M ∈ CN×N is the clutter
covariance matrix whose rank, r < N , is for the moment
assumed known, KP > r and KS > r; M l ∈ CN×N ,
l = 1, 2 are defined as M l = UΓlΛΓlU

†, l = 1, 2, where
Λ = diag (λ1, . . . , λr, 0, . . . , 0), λ1 ≥ . . . ≥ λr > 0, contains
the eigenvalues of M , U is the unitary matrix of the corre-
sponding eigenvectors, Γl = diag(

√
γ1,l, . . . ,

√
γr,l, 0, . . . , 0),
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Fig. 1: Classification architecture diagram

γ1,l ≥ . . . ≥ γr,l > 0, l = 1, 2, represent possible power
variations of the clutter along different directions. K1 ∈
{r, . . . ,KS − r} is the unknown positions of the clutter power
transitions within the lagging or leading windows under H2.

In (1), H0 is the homogeneous environment, where the
clutter component in the primary and secondary data share
the same statistical characterization, whereas H1 is the well-
known partially-homogeneous environment, where clutter in
the primary and secondary data share the same clutter covari-
ance structure up to a scaling factor 1, and H2 is the non-
homogeneous environment where secondary data contains a
clutter edge coming from either the lagging or the leading
window [14];

Let us denote by ZP = [z1, . . . ,zKP
] ∈ CN×KP ,

ZS = [r1, . . . , rKS
] ∈ CN×KS , and Z = [ZP ,ZS ] ∈

CN×(KP +KS) the overall data set. Based upon the above
assumptions, the probability density function (PDF) of Z
under Hi, i = 0, 1, 2, namely fi(Z;θi) can be expressed as
fi(Z;θi) = fP (ZP ;σ2,M)fSi(ZS ;θi), i = 0, 1, 2, where

fP (ZP ;σ2,M) =

[
exp

{
− 1

KP

∑KP
k=1 z

†
k(σ2I+M)−1zk

}
πN det(σ2I+M)

]KP

fS0
(ZS ;θ0) =

[
exp

{
− 1

KS

∑KS
k=1 r

†
k(σ2I+M)−1rk

}
πN det(σ2I+M)

]KS

fS1(ZS ;θ1) =

[
exp

{
− 1

KS

∑KS
k=1 r

†
k(σ2I+M1)−1rk

}
πN det(σ2I+M1)

]KS

fS2
(ZS ;θ2) =

[
exp

{
− 1

K1

∑K1
k=1 r

†
k(σ2I+M)−1rk

}
πN det(σ2I+M)

]K1

×[
exp

{
− 1

KC

∑KS
k=K1+1 r

†
k(σ2I+M2)−1rk

}
πN det(σ2I+M2)

]KC

(2)
with θ0 =

[
σ2,νT (M)

]T
, θ1 =

[
θT0 ,ν

T (M1)
]T

, θ2 =[
θT0 ,K1,ν

T (M2)
]T

, KC = KS−K1, and ν(M) the vector-
valued function selecting the distinct entries of M .

III. CLASSIFICATION ARCHITECTURE DESIGN

The classification architecture devised in this paper is
grounded on a heuristic design criterion leading to the cascade
of two binary hypothesis tests as illustrated in Fig. 1, where
H1 = {H0, H1}. In Fig. 1, the first stage rejects H2 by
understanding the homogeneity of the secondary data and, if

1Actually, the considered partially-homogeneous environment is slightly
different from the classical one since we also consider the presence of thermal
noise.
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homogeneous, we discriminate between H0 and H1. At each
stage, the GLRT design criterion is exploited as shown below.

The first stage is aimed at discriminating between H1 and
H2. To this end, we exploit the following GLRT

max
θ2

fS2
(ZS ;θ2)

max
θ0

fS0(ZS ;θ0)

H2

≷
H1

η1, (3)

where η1 is the threshold set to guarantee the pre-assigned
misclassification probability. Following the lead of [14] and
[21], the compressed log-likelihood of ZS under H0 can be
written as

h′0(ZS ; θ̂′0) = −KS

[
r∑
i=1

log
µS,i
KS

+ (N − r) log σ̂2
(0)

]
−KSN log π −KSN, (4)

where θ̂′0 is the estimate of θ0, σ̂2
(0) = 1

KS(N−r)
∑N
i=r+1 µS,i

with µS,1 ≥ . . . ≥ µS,N ≥ 0 the eigenvalues of ZSZ
†
S .

On the other hand, in order to maximize fS2(ZS ;θ2) over
θ2, exploiting Theorem 1 in [22] we obtain

− Tr
[(
σ2I + Λ

)−1
U †V 1Θ1V

†
1U
]

− Tr
[(
σ2I + Γ2ΛΓ2

)−1
U †V 2Θ2V

†
2U
]

≤ −Tr
[(
σ2I + Λ

)−1
Θ1

]
−Tr

[(
σ2I + Γ2ΛΓ2

)−1
Θ2

]
,

(5)

where Θ1 and Θ2 are diagonal matrices containing the eigen-
values of ZS1

Z†S1
and ZS2

Z†S2
, respectively, with ZS1

=
[r1, . . . , rK1

] and ZS2
= [rK1+1, . . . , rKS

]. V 1 ∈ CN×N
and V 2 ∈ CN×N are the unitary matrix of corresponding
eigenvectors of Θ1 and Θ2, respectively. Then it is easy to
show that the maximization with respect to θ2 consequently
leads to the following compressed log-likelihood function

h′2(ZS ; θ̂′2) = max
K1=r,

...,KS−r

{
−KSN log π −K1

r∑
i=1

log
µ1,i

K1

−KC

r∑
i=1

log
µ2,i

KC
−KS(N − r) log σ̂2

(2) −KSN

}
, (6)

where σ̂2
(2) = 1

KS(N−r)
∑N
i=r+1(µ1,i + µ2,i).

Thus, the GLRT in (3) can be written as

h′2(ZS ; θ̂′2)− h′0(ZS ; θ̂′0)
H2

≷
H1

η1. (7)

If H1 is declared, in the second stage we decide whether the
secondary data have the same clutter covariance with primary
data through the following GLRT

max
θ1

f1(Z;θ1)

max
θ0

f0(Z;θ0)

H1

≷
H0

η2, (8)

where η2 is the threshold. The maximization problem under
H1 can be written as

max
σ2,Λ,U ,Γ1

−KS log det
(
σ2I + Γ1ΛΓ1

)
−KP log det

(
σ2I + Λ

)
−

KP∑
k=1

z†kU(σ2I + Λ)−1U †zk

−
KS∑
k=1

r†kU(σ2I + Γ1ΛΓ1)−1U †rk. (9)

In this stage, we show that a suboptimum estimate of U ,
denoted by Û , can be obtained by minimizing a specific
residual error between data centroid and the direction of
minimum energy. The proof is omitted for brevity. Meanwhile,
we estimate λi following the lead of [14] with primary data
only. Specifically, σ̂2 = 1

KP (N−r)
∑N
i=r+1 µi, and λ̂i =

max
{

1
KP

µi − σ̂2, 0
}

, i = 1, . . . , r, where µ1 ≥ . . . ≥ µN ≥
0 are the eigenvalues of ZPZ

†
P . As for γi,1, i = 1, . . . , r,

under the constraint that γ1,1 ≥ . . . ≥ γr,1 > 0, we introduce
γi,1 =

∑r
j=i τj,p, i = 1, . . . , r, where τr,p > 0, and τi,p ≥ 0,

i = 1, . . . , r − 1. Thus the estimates of γ̂i,1, i = 1, . . . , r,
are given by γ̂i,1 =

∑r
j=i τ̂j,p, i = 1, . . . , r. The compressed

log-likelihood of Z under H1 can thus be written as

h1(Z; θ̂1) = −(KP +KS)(N − r) log σ̂2 −
r∑
i=1

SP (i, i)

σ̂2 + λ̂i

−
N∑

i=r+1

SP (i, i)

σ̂2
−

r∑
i=1

SS(i, i)

σ̂2 + γ̂i,1λ̂i
−

N∑
i=r+1

SS(i, i)

σ̂2

−KP

r∑
i=1

log
(
σ̂2 + λ̂i

)
−KS

r∑
i=1

log
(
σ̂2 + γ̂i,1λ̂i

)
,

(10)

with SP =
∑KP

k=1 Û
†
zkz

†
kÛ and SS =

∑KS

k=1 Û
†
rkr

†
kÛ .

Then, under H0, even though it is possible to obtain the
exact MLEs as shown in (4), we approximate the compressed
likelihood as under H1 so that vectors undergo the same
approximated transformation represented by U . It is easy to
show that the compressed log-likelihood function under H0 is

h0(Z; θ̂0) = −
r∑
i=1

SZ(i, i)

σ̂2 + λ̂i
−

N∑
i=r+1

SZ(i, i)

σ̂2

− (KP +KS)

[
r∑
i=1

log
(
σ̂2 + λ̂i

)
+ (N − r) log σ̂2

]
,

(11)

with SZ = Û
†
ZZ†Û . The logarithm of the GLRT in the

second stage can be written as

h1(Z; θ̂1)− h0(Z; θ̂0)
H1

≷
H0

η2. (12)

In the case that r is unknown, we have to estimate it from
data. To this end, we devise a preliminary stage that provides

1863



the estimate of r by means of the Model Order Selection
(MOS) rules [23], [24]. The estimate of r exploiting the
Akaike Information Criterion (AIC), Generalized Information
Criterion (GIC), Bayesian Information Criterion (BIC) is given
by r = arg minr=1,...,M

{
−2h′0(ZS ; θ̂′0) + κ · p(r)

}
, where

M < N is an upper bound on r, h′0(ZS ; θ̂′0) is given by (4),
and κ · p(r) is the penalty term with p(r) = r(2N − r) + 1
the number of unknown parameters [25] and

κ =

 2, AIC,
(1 + ρ), ρ ≥ 1 GIC,
log (2NKS), BIC.

(13)

IV. ILLUSTRATIVE EXAMPLES

In this section, we investigate the classification performance
of the proposed architectures in terms of the Probability of
Correct Classification (Pcc), by means of standard Monte
Carlo counting techniques. Specifically, we compute Pcc and
the Root Mean Square (RMS) estimation errors of clutter edge
positions over M = 1000 independent trials. The numerical
examples assume that N = 9, KP = 8, KS = 32,
K1 = 20, and σ2 = 1. The clutter covariance matrix of
primary data is defined asM = σ2

c

∑
θi∈Θ v(θi)v(θi)

†, where
σ2
c is the clutter power set according to the Clutter to Noise

Ratio (CNR) defined as CNR = 10 log(σ2
c/σ

2) = 30 dB,
Θ = {−20◦, 0◦, 10◦} implying that the true rank of the clutter
covariance matrix is r = 3, and the steering vector is given
by v(θi) = 1√

N

[
1, eπ sin θi , . . . , eπ(N−1) sin θi

]
. As for γs,

we assume that ω(1),l ≥ . . . ≥ ω(r),l, l = 1, 2, are ordered
uniformly distributed random variables, and γi,l = ∆lω(i),l,
i = 1, . . . , r, l = 1, 2, where ∆l, l = 1, 2, are determined
according to the Clutter Power Ratio (CPR) under Hl, l = 1, 2,
given by CPRl = 10 log ∆l, l = 1, 2. Moreover, we evaluate
the thresholds under each stage according to a false classi-
fication probability PFC = 0.05 by means of Monte Carlo
techniques resorting to 100/PFC independent trials.

First of all, we focus on the performance of rank estimation.
In Fig. 2, we show the percentage of estimation of the BIC
rule under each hypothesis with different parameters (results
not shown here indicate that the BIC rule returns better
performance than AIC and GIC). As can be observed, the
preliminary stage returns a correct estimation probability no
less than 0.997 for all the considered situations. In this respect,
in the following classification performance analysis we assume
that the true value of r is known.

Table I contains the classification results of 1000 trials when
data are generated under H0. Inspection of the Table highlights
that the classification procedure correctly decides for H0 with
a Pcc greater than 0.95.

In Fig. 3 we proceed with the performance under Hl,
l = 1, 2, and plot the Pcc under each hypothesis versus CPRl.
Specifically, Fig. 3(a) shows that under H1, the system ensures
Pcc ≥ 0.9 when CPR1 ≥ 20 dB. Meanwhile, when CPR1 is
too small, H1 cannot be correctly classified since the power
variation between the primary and secondary data is too low to
be identified. Fig. 3(b) deals with the case when H2 is true and
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Fig. 2: Rank estimation performance under each hypothesis

the curve highlights that the clutter edge in the secondary data
characterized by CPR2 ≥ 20 dB can be correctly classified
since the power transitions become nonnegligible.

TABLE I: Classification results under H0

H0 H1 H2

951 0 49
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P
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(a) Pcc versus CPR1 under H1
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1
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(b) Pcc versus CPR2 under H2

Fig. 3: Classification performance under each hypothesis

The final analysis focuses on the estimation capabilities
of the proposed approach for what concerns the position of
the clutter edge. In addition, the edge index K1 is generated
as discrete uniform random variables taking on values in
K1 ∈ {r, . . . ,KS − r}. Fig. 4 depicts the RMS estimation
error against CPR2 and highlights that when CPR2 ≥ 30 dB,
the estimation with respect to K1 can ensure an error with
RMS < 1 and achieve accurate estimates when CPR2 ≥
40 dB.

V. CONCLUSION

In this paper, we focused on the radar operating scenario
classification problem and devised a heuristic architecture
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which is the cascade of two stages solving two binary hypothe-
sis test, respectively. Such an information is crucial for the the
selection of the most appropriate decision scheme for target
detection tasks. In this context, the GLRT-based approach was
applied at each stage and the simulation results highlighted
the effectiveness of the proposed architecture. Future research
tracks may include the classification architecture design in the
presence of more challenging scenarios, accounting for more
clutter edges or fully-heterogeneous environment.
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