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Abstract—Non-intrusive face authentication and biometrics
are becoming a commodity with a wide range of applications.
This success increases their vulnerability to attacks that need
to be addressed with more sophisticated methods. In this paper
we propose to strengthen face liveness detection models, based
on photoplethysmography (rPPG) estimated pulses, by learning
to generate high-quality, yet fake pulse signals, using Deep
Convolutional Generative Adversarial networks (DCGANs). The
simulated liveness signals are then used to improve detectors by
providing it with a better coverage of potential attack-originated
signals, during the training stage. Thus, our DCGAN is trained to
simulate real pulse signals, leading to sophisticated attacks based
on high-quality fake pulses. The full liveness detection framework
then leverages on these signals to assess the genuineness of pulse
signals in a robust manner at test-time. Experiments confirm that
this strategy leads to significant robustness improvements, with
relative AUC gains > 3.6%. We observed a consistent performance
improvement not only in GAN-based, but also in more traditional
attacks (e.g. video face replay). Both code and data will be made
publicly available to foster research on the topic1.

Index Terms—Face liveness detection, Generative adversarial
networks, Presentation attacks, EVM pulse signals

I. INTRODUCTION

Due to the rise in popularity of face unlocking mechanisms
on smartphones (and subsequently on other mediums), the risk
of face spoofing - by using a copy of someone’s face to bypass
security measures - becomes higher [1]. One possible reason
for this risk is the fact that face spoofing is a very low-cost
attack, since basically anyone has access to a camera or a
printer, and a picture of the person they want to target [2].
Hence, mechanisms like liveness biometrics can help mitigating
this risk, since the presence of a real person in time and space
implies that it is not a presentation attack (PA) [3]–[6].

Pulse estimation through photoplethysmography (rPPG) is
an interesting approach that enables the development of non-
intrusive and biometric-based liveness detectors [4], [5], [7].
In this setting, through an RGB camera, individual’s pulse
signals can be estimated with well-established approaches
like Eulerian Video Magnification (EVM) [7]. However, given
the sensitive of this particular domain due to a myriad of
reasons, data scarcity is often an issue, making the gathering of
representative data to learn robust detectors a major challenge.
We propose to increase the robustness of such detectors by
improving their generalization through robust training strategies.
Namely, inspired by previous works in the generation of
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Fig. 1: Creation of a presentation attack using generated pulse
signals. p - represents the pulse value added to each pixel
of the face bounding-box (variation of green channel); m -
represents the mean value of the green channel of the whole
photograph. Link to injected GAN pulse face video.

ECG signals [8], instead of just adding random noise to
existing pulses to perform data augmentation, we propose
a more sophisticated approach leveraged by a Discriminative
Convolutional Generative Adversarial Network (DCGAN) [9],
that learns the distribution of training data.

These signals are obtained by placing a Generator in
competition (min-max game) with a Discriminator, until both
converge to a point of equilibrium. The goal of the Generator
is to generate fake signals that are similar to the real signals
used during the training. On the other hand, the Discriminator,
which is a binary classifier with the task of discriminating
between fake and real pulses, is jointly trained with both the
samples produced by the Generator and the real samples from
the training set. This process leads to two outcomes that we
explore in this paper:

• Presentation Attack Generator. The DCGAN generated
pulse signals can be used to create an attack. We show
that the generated pulse signals are quite similar to the
real ones. This makes it feasible to leverage the Generator,
depicted in Figure 2, as a fake pulse signals source.

• Roust TCN-based PA Detector. The second outcome
of this paper consists of a novel robustly trained TCN-
based [10] PA detector, whose effectiveness further evi-
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dences the feasibility of our augmented training procedure,
that includes both generated fake signals and pulse signals
from conventional attacks.

II. RELATED WORK

Through photoplethysmography (rPPG) with RGB cameras,
face pulses can be estimated and used for liveness assess-
ment [3]. For instance, Eulerian Video Magnification [7] takes
a video sequence and performs spatial decomposition, followed
by a temporal filtering of frames. This process results in
an amplified signal revealing information that was originally
invisible to the naked eye. Namely, is enables capturing blood
circulation through skin color variation. Alternatively, pulse
can be remotely estimated using CNN-based approaches [6].
Since the latter requires training, PA detectors often opt for
statistic-based approaches. In [4] liveness is assessed by jointly
considering rPPG features represented by multi-scale long-
term spectral statistics, and global and local region information
extracted from a patch-based CNN.

On a different vein, GANs [11] are generative models,
composed by a discriminator and a generator, that are trained
in a zero sum game. GANs have been used in the literature
for generating ECG signals [8], hinting that they should
also be adequate in a liveness detection setting, as a way
to automatically generate pulse signals.

III. ROBUST FACE LIVENESS DETECTION

The proposed framework implements a face liveness detector
that is divided in two parts. First, the face video is processed and
with the EVM technique, a pulse signal is extracted. Second,
the estimated pulse signal is passed to a classifier that decides
if it is an attack or not. This section describes how to augment
the classifier training data through the creation of artificial
pulse signals in an automated way. This is achieved with a
DCGAN model, illustrated in Figure 2, that will be described
in the following sections.

A. Generator of artificial Pulse signals

The Generator of pulse signals, detailed in Figure 2, will be
responsible for the generation of pulse signals from a random
seed: it is composed of transposed convolutional layers, batch
normalization and ReLU activation functions. For the output, a
tanh function is applied to constrain the resulting values to a
range of [−1, 1], thus matching the scale of the training data.

As input data, for each sample, the generator receives a vector
drawn from a normal distribution, and tries to produce a signal
whose size and distribution is the same as the real signals of
the training set. In practice, this approach is only possible due
to the use of the stride in the transposed convolutional layers,
followed by a batch normalization [12] layer and a ReLU
activation function. During our experiments, we found that it
is important to apply batch normalization after the transposed
convolution layer, to help the flow of gradients during training.
It acts as a regularizer, eliminating the need to use Dropout. As
a consequence, we were able to use higher learning rates and
make the model less sensitive to bad initializations. Formally:
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Fig. 2: DCGAN Generator model architecture used to produce
artificial pulse signals (top) and DCGAN Non-linear Discrimi-
nator model architecture used to distinguish artificial from real
pulse signals (bottom).

• z represents a vector extracted from a normal distribution.
• G(z) represents the Generator’s network which tries

to approximate the distribution of the signal z to the
distribution of training data. Hence, the purpose of the
Generator is to estimate the distribution of the training
data (Pdata) in order to generate artificial samples from
the estimated distribution (Pz).

B. Non-linear Discriminator for liveness detection

The architecture of the non-linear Discriminator, presented
in Figure 2, is quite similar to the Generator architecture,
described in the previous subsection. The non-linear Discrimi-
nator model, which is a binary classifier, unlike the Generator,
is formed by convolutional layers. These are followed by a
batch normalization layer and finally a LeakyReLU activation
function.

As input data, this model receives a 128-dimensional signal
and returns as result 1 (artificial signal) or 0 (real signal) using
a sigmoid activation function. It is worth mentioning that we
use strided convolutional layers instead of using pooling to
reduce the input sample. This enables the the network to learn
its own pooling function [9]. Formally we have:

• x represents the pulse signal given to the Discriminator.
• D(x) represents the Discriminator’s model which classifies

the signal x, returning as a result 1 (artificial signal) or
0 (real signal).

• D(G(z)) represents the result (0 or 1) of the classification
produced by the Discriminator when evaluating a signal
created by the Generator.

C. Cost function

The cost function of a DCGAN is defined as [11]:
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min
G

max
D

V (D,G) = Ex∼Pdata(x)[log D(x) ]

+ Ez∼Pz(z) [log(1−D(G(z))) ].
(1)

At the beginning of the training process, when the Generator
is weak, the Discriminator manages to reject the samples with
great confidence because they are different from the training
data, which causes the saturation of (log(1−D(G(z))))). To
solve this problem, we adopt the solution of [9], [11], which in-
stead of letting the Generator minimize the (log(1−D(G(z))))
it is more efficient to maximize the log D(G(z)) which allows
us to have much stronger gradients at the beginning of the
training. For that reason, the previous equation was rewritten
by applying this new approach, leading to:

max
G

max
D

V (D,G) =

Ex∼Pdata(x) [ log D(x) ] + Ez∼Pz(z) [ log(D(G(z))) ].
(2)

This Discriminator-Generator competition ends when both
models reach a point where they stagnate , i.e. Pz ≈ Pdata.
At this point, the Generator is expected to be able to fool the
Discriminator half the time, i.e. D(x) = 1

2 .

D. Training Process of the DCGAN

The DCGAN training process used to obtain a strong
generator of artificial pulse signals is carried in two alternating
steps.

1) Discriminator Update: We recall that the objective of the
Discriminator’s training is to maximize the result of correctly
discriminate between false and real signals. In practice, as stated
in [11], the intention is to update the Discriminator in a way that
maximizes each update gradient information. To achieve this,
it is necessary to maximize the log(D(x))+ log(1−D(G(z))).
Having this in mind and following [9], we created small sets
of real and false pulses to perform estimate the gradients in
two phases.

First phase: Initially, a batch of real pulses is formed
from the training set. Then, the created batch is passed to
the Discriminator to evaluate the loss (log(D(x))) through the
binary cross-entropy loss function.

Second phase: In the second phase of this process, a batch
of artificial signals produced by the current Generator is created.
As in the first phase, the created batch is used as input data
for the Discriminator to evaluate the loss (log(1−D(G(z))))
using the binary cross-entropy loss function.

After these two phases, with gradients of both batches already
accumulated, we backpropagate gradients using the Adam
optimizer. Then, we proceed to the Generator’s training part.

2) Generator Update: Following [11], we maximize
the log(D(G(z))), instead of minimizing the log(1−D(G(z)),
to mitigate vanishing gradients. To achieve this, the following
steps have been taken: (1) The data batch produced by the
Generator in Part 1 is previously classified by the Discriminator;
(2) The loss of the Generator is computed using a binary cross-
entropy loss over ground truth labels; (3) The gradients of
the Generator is evaluated using a backward pass; (4) Finally,

the parameters of the Generator are updated using Adam’s
optimizer.

Using ground truth labels enables us to use log(x) from the
binary cross-entropy loss function instead of log(1−x), which
is exactly what was intended. The process of both parts is then
repeated until the two models converge and plausible artificial
heart signals are generated.

E. Injecting Fake Generated Pulse Signals in Face Videos

The generated pulse signals can be used to easily create a
real-life attack using just a static photograph. Given a generated
pulses, we can compose a video from the photo, where we
vary the green color in an amount that is sampled from the
generated signal, as shown in the Figure 1. This way, we
can observe that the color of an individual’s face is slightly
changed (greener→blood flows) in some frames, in a way that
it follows a close to genuine pulse signal.

This simple example illustrates the importance of this work
in preventing presentation attacks.

IV. EXPERIMENTS

A. Dataset

To evaluate the proposed models on our setting, i.e. face
liveness detection on the fly, we collected a representative
dataset. All videos were filmed in different environments such
as good/low/frontal illumination and different stress conditions
to simulate the real use case. For each volunteer, we decided to
gather 9 videos of the face of a real individual (Real) and 12
videos of a presentation attack (Fake) in different formats of the
same person. Furthermore, the real videos were captured under
different stress conditions, such as rest, after walking upstairs
and after brisk walking, to create diverse pulse variations. On
the other hand, as it is not possible to vary the stress conditions
in the presentation attack videos, we decided to use different
sizes of photographs, for example, photo of the neutral face,
moving the photo, face sized photo and mask as these represent
potential basic attacks that can occur in a real setting. Therefore,
we obtained a total of 21 videos, of roughly 2 minutes each, all
of them with distinct characteristics. Subsequently, the recorded
videos were cut into 5 sec videos To perform these cuts, a 1 sec
sliding window was used, which gradually progresses until it
reaches 2 minutes. As a result, more or less 2.436 videos were
obtained from each of 6 volunteers, obtaining in total 7.424
videos of which 5.364 were used to train the models, 947 to
validate the training and 1.113 to realise the final test.

In addition to the data collected (which will be made
available), we generated as many artificial signals as needed
using DCGAN with different hyper-parameters. We kept the
balance between between Real and Fake + Generated samples
used along the learning process of the models. During the data
processing, we normalize each signal in order to guarantee that
all of them are on the same scale, [−1, 1].

B. Presentation Attack Detector Baselines

All models were trained in a supervised fashion under three
attack conditions: (i) Real vs Fake, (ii) Real vs Generated, and
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(iii) Real vs Fake + Generated, where this last type of attack
combines the two previous ones. Using the user videos and the
our generated pulse signals, we trained the GAN as described
previously and used PA detectors sharing the same architecture
as the GAN discriminator:

• GAN: Classifier with the same architecture as the Dis-
criminator used during the DCGAN training, which is a
5 CNN layers classifier as represented in Figure 2.

• GAN-2: Same architecture as in GAN, but with 2 fewer
CNN layers, to verify how it affects performance when
pulse signals are generated by a less complex architecture.

• GAN+2: Same architecture as GAN, but with 2 more
CNN layers, representing a more complex architecture.

The above baselines favour the cases where the attacker
GAN discriminator has privileged information regarding the
target PA detector. However, one would expect the PA detector
architecture to be unknown, i.e. with a different architecture
from the GAN discriminator, which is a more plausible scenario.
Following this reasoning, several robust liveness detection
algorithms were trained and evaluated:

• Linear: simple fully connected feed-forward neural net-
work (FFNN), with a sigmoid activation function.

• TCN: a) a Temporal Convolutional Network model [10]
(TCN) with depth d = 5, that uses dilated causal
convolutions to process signals in a sequence-modeling
setting.

• CNN+Res: a CNN-based classifier (CNN+Res), with
standard convolutions, simulating a TCN single-block.
This includes a 5 CNN layers classifier as represented in
Figure 2

All PA detectors were trained on the indicated data sample.

C. Results and Discussion

1) Training convergence: First, to confirm that the imple-
mented DCGAN was converging, we analyzed the training loss
of the Generator and the Discriminator. It is possible to observe
in Figure 3a, that the losses of both models are converging
as expected. This means that the Generator is creating more
realistic pulse signals and due to this, the Generator’s loss is
decreasing. On the other hand, during the training process, the
Discriminator is also improving and correctly discriminating
the Real samples from the Generated samples. Thus, the
Generator’s loss is increasing.

2) Generation of Pulse signals: Figure 3b illustrates how
the Generator is generating increasingly better signals as the
training epochs advance. In the last epoch, the Generated
signal (blue curve at the bottom of Figure 3b) is very similar
to the Real signals (green line at the bottom of the figure).
With this approach, we were able to produce good quality pulse
signals, meaning that the data distribution is very similar to
the real ones. Making use of these generated pulse signals, we
now proceed to evaluate how different PA detectors perform.

3) Robustness to Presentation Attacks: In the most critical
setting, presentation attack detectors should be able to detect
both Fake signals and Generated signals (R vs F + G).

(a) Generator and Discriminator loss convergence.

Start

End

Generated signals (evolution)

(b) Pulse signals evolution.

Fig. 3: DCGAN training and pulse signals quality analysis.

Analyzing Table I, we see that performance is directly linked
to the classifier complexity, i.e., the linear detector is the worst
performing classifier, far from the performance achieved by
the GAN based detector that share the same architecture as
the DCGAN’s Discriminator. It is clear that the TCN approach
achieves the best AUC result (93.55), followed by the more
complex DCGAN+2 model with an AUC of 92.02.

Another main observation is that in all models, adding
generated signals helps improving the performance, based on
columns R vs (F+G). When looking at the Fake signal type of
attack (column R vs F), it is possible to see that both CNN+Res
and TCN models demonstrate equivalent performance. In
terms of detecting Generated pulses, while the more robust
models CNN+Res and TCN obtain higher AUC, DCGAN
achieves similar AUC given that it matches the signal generator
architecture. The simpler CNN method with 2 fewer layers than
the original DCGAN architecture, GAN-2, achieves the worst
AUC (88.08). This compares poorly with the best GAN-based
detector, GAN+2, that has an AUC of 92.02.

Finally, it is interesting to note that when the detector archi-
tecture matches the generator one, using the same architecture
that was used to generate the pulse signals is never the best
approach in the most critical setting: R vs (F + G).
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TABLE I: Presentation attack detection results under different
types of attacks: Fake photo (F), Generated pulse signal (G)
and both attacks (F + G). ∆ AUC column shows the robustness
improvement by adding the generated pulse signals.

Detector Attack Type F1-score AUC ∆ AUC
PA detector architecture = Discriminator

DCGAN-2
R vs F 73.37 81.13
R vs G 93.06 97.73 +7.9%
R vs (F + G) 84.11 88.08

DCGAN
R vs F 83.39 83.82
R vs G 94.84 98.06 +6.8%
R vs (F + G) 85.13 89.97

DCGAN+2
R vs F 84.99 87.37
R vs G 93.33 97.80 +5.1%
R vs (F + G) 87.39 92.02

PA detector architecture ̸= Discriminator

Linear
R vs F 79.69 67.73
R vs G 80.99 89.07 +1.2%
R vs (F + G) 73.98 68.55

CNN+Res
R vs F 87.59 90.21
R vs G 95.71 98.23 +0.6%
R vs F + G 89.80 90.73

TCN
R vs F 87.70 90.17
R vs G 95.47 98.49 +3.6%
R vs (F + G) 88.70 93.55

4) ROC curves: The presentation attack detection perfor-
mance can be observed in Figure 4, which shows the real
case scenario where the detector may be faced with a Real
pulse (genuine user), Fake pulse (corresponding to a traditional
attack) or Generated pulse signal samples.

For comparing the models in terms of the ROC AUC, we
can observe in Figure 4 that all classifiers have the same
monotonic behaviour. The best performing approach, TCN with
93.55 AUC, is consistently superior, followed by the GAN+2
model with 92.02 AUC. This demonstrates that models with
more complex architectures benefit from having access to more
training data, covering both pulse signals corresponding to
traditional attacks (e.g. photo replay) and generated signals.

V. CONCLUSION

This paper demonstrated how pulse signals, generated by a
DCGAN, can be used to increase the robustness of presentation
attack detector models. Namely, the key contributions of this
paper are as follows:

• Our DCGAN approach provides a principled approach
for face pulse generation, that can effectively increase the
robustness of presentation attack detectors.

• Complex detectors models, such as the TCN, benefit
from the use generated pulse signals. We observed that
by training detectors with both photo replay attacks
and generated signals, provides better generalization and
increased performance.

Fig. 4: ROC curves on the Real, Fake and Generated pulses
scenario.

As future work, we plan to explore a multi-architecture pulse
generation solution, making it harder for an attacker to exploit
weaknesses of a specific architecture.
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