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Abstract—Identifying unknown RADAR emitters from re-
ceived pulses is an important problem in electronic intelligence. It
is a difficult problem, as agile RADAR emitters can have complex
characteristics, and measurements are corrupted by various
noises (non-Gaussian noise, missing pulses, etc.). In this paper, we
introduce a new classification method based on optimal transport
distances between collected RADAR pulses and a priori known
emitter classes. Compared to previously proposed methods, this
method does not require a training step, it can deal with a large
number of classes, and it is easily interpretable. The method is
tested on data obtained by a realistic RADAR scene simulator.

Index Terms—Optimal Transport, Classification, RADAR
recognition, Electronic warfare

I. INTRODUCTION

RADAR emitter classification aims to identify the RADAR
emitters present in a measured signal to gain electronic intel-
ligence in a given environment. Recent advances in RADAR
technologies make this task more difficult, as RADAR emitters
exhibit more complex behaviors: agility in frequency and pulse
repetition intervals, complex scanning patterns, etc. In this
work, we assume that RADAR pulses have been deinterleaved,
that is, the analyzed pulses are assumed to be emitted from a
single emitter. Several methods exist to solve this problem,
based on the analysis of the pulse repetition intervals [1],
[2], deep learning [3], or hierarchical clustering with optimal
transport distances [4].

For simple RADAR signals, time-frequency analysis is suf-
ficient to identify the present emitter with great certainty [5].
Several supervised classification methods have been proposed
to deal with more complex cases. Most of the methods are
based on Deep Learning models and consider a small number
of RADAR classes [6]-[10]. These methods require a large
dataset for the training step, and adding a new class requires
the classifier to be retrained. Additionally, a challenge in
processing RADAR data is acquiring real data, even more
labeled real data. Algorithms and methodologies are often
developed using small datasets or simulated data. Most of the
previous methods are based on simulated data, and their result
performance strongly relies on the simulator’s accuracy. Tech-
nological developments have modified the recognition process.
The profiles of transmitters have become more and more
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complex, enhancing the existing panorama of transmitters of
new types with more varied patterns. New methods have been
developed in order to compare the group characteristics to a
known database, also allowing to detect new transmitters [11],
[12].

The article introduces a classification method based on an
optimal transport distance between collected RADAR pulses
and RADAR emitter models from a reference database con-
taining more than 60 classes. The method does not require
a training step, and it also allows the easy creation of new
RADAR classes. The paper is structured as follows: Section 2
presents the data and their origin. Section 3 contains basic
notions on optimal transport distances and introduces the
proposed classification method. Simulation results are given in
Section 4, while Section 5 concludes the paper and highlights
interesting perspectives.

II. DATA DESCRIPTION

Data are collected by a receiver, listening on a large band-
width. Pulses are then segmented, analyzed, and described by
four features:

o Frequency, F (f,)

o Pulse width, PW (w,,)

o Level, G (g,)

o Time of Arrival, TOA (¢,,)

Additional features, such as frequency and amplitude modu-
lations, are not considered in this work.

Fig. 1 shows a simulated signal gathering the pulses of
five different emitters. In the top plot, the pulse level is
plotted as a function of time, showing that several RADAR
emitters can be active simultaneously. In the bottom plot,
pulses are plotted based on their estimated frequency and pulse
width. One can clearly see that a given emitter may emit
on different frequencies (e.g., six frequencies for emitter (1).
Moreover, errors in the pulse width estimation are important.
Estimated pulse widths are truncated for low-energy pulses,
mainly when the receiver is in a side-lobe of the emitter.
Real data are challenging to acquire, so that the method
will be validated on such simulated data. Finally, note that
the proposed classification method requires separated pulses.
Several deinterleaving methods have been proposed in the
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Fig. 1.
emitter.

Set of pulses contained five transmitters. Each color represents an

literature (see for instance [1]-[4], [7]). Here, we assume that
the RADAR pulses have been correctly separated.

III. IDENTIFICATION ALGORITHM

The proposed methodology, outlined in Algorithm 1, is
based on the development of a distance between a set of re-
ceived RADAR pulses and a description of the characteristics
of a RADAR emitter from a reference database. Classification
is made by identifying the closest (in terms of distribution
distance) RADAR emitters to the received data. In the case of
emitters with simple characteristics (e.g., single frequency),
simple distances such as a Euclidean distance between the
average of the features of the received pulses and the features
of a reference emitter can be used. However, such distances
cannot deal with more complex, agile emitters, for which
their averages cannot simply describe the distribution of the
features.

Here, received data and classes are represented as probabil-
ity distributions. There are several ways to define a distance
between probability distributions. For instance, the Kullback-
Leibler divergence or the total variation distance are frequently
used. Nevertheless, these distances or divergences cannot be
used in our case, as the distributions representing the data
and the classes are discrete and, in general, will have disjoint
supports. We will show in the sequel that the proposed optimal
transport distances are well-suited to the problem at hand, as
they can deal with distributions representing agile emitters and
are robust to noise.

A. Optimal transport

Optimal transport makes it possible to find a mapping
between an original mass distribution and a different target
distribution [13], [14]. In this work, we focus on the part of this
theory dealing with discrete probability distributions, useful
for describing received data and different classes of typical
RADARsS.

In particular, we consider two discrete probability distribu-
tions v = YN 4,0, and p = M b,.6,,., with a =
(a1,...an)T e RY, N a4, =1,and b= (by,...bn)" €
RM, M b, = 1. A transport plan P between v and 1
is defined by its coefficients P,,,, representing the amount of
mass taken from x,, t0 y,,. With ¢(-,) a cost function, and
Cnm = ¢(Zn, Ym) the cost of transporting a unit of mass from
Zp, tO Yy, the total cost C'(P) of a transport plan is

N M
C(P) = Z Z CrimPrm ()

n=1m=1

The consistency of the transport plan P with v and p is
guaranteed by P1y; = a, P71y = b.

The optimal transport plan P* is defined the minimization
of the transport cost in (1) under the following constraints:

P* = argmin C(P) subject to P1,; = a, PTiy=b (2
PeR) M

In the following, this distance is applied to the similarity
measure between emitters, and to the classification of a set of
RADARs pulses. The cost function c(z,y) = ||z — y|2 will
be used. The optimal transport distance between v and p is
then defined by d(v, ) = C(P*).

Algorithm 1 Classification with Optimal Transport distance.

« Construction of a density probability distribution from the
data: v

« Construction of discrete measures from a RADAR emitter
database: ;

« Computation of the transport cost between the probability
distribution of the data and of each emitter model: d; =
d(l/ ’ /Jj)

o Selection of the emitter model with the lowest transport
cost between its probability distribution and the distribu-
tion of the data: j*

B. Measuring the similarity between emitters

The first application of optimal transport is to measure
the distance between classes of typical emitters. Our initial
RADAR database includes more than 60 different emitters, and
some classes have very similar characteristics while others are
easily distinguishable. Typical RADARs characteristics were
randomly simulated to highlight the previous comment. As
detailed above, we have chosen to work only with specific
features: frequency f, and pulse width w,, as they are
very significant and reliable. From this database, we build a
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measure p; describing each typical RADAR belonging to the
reference database by:

N
= ands, 3)

n=1

with N the number of frequencies and pulse widths on
which the RADAR transmits, « the proportion of frequency
and pulse width and §, the Dirac mass (with Y o, = 1).

Fig. 2 shows an example of a representation of typically
simulated emitters. Each stem represents a frequency used
by the emitter for an emitter, with height representing the
proportion of appearance of this frequency. Some emitters emit
on very different frequency bands like transmitters B and C.
They can easily be distinguished thanks to their frequency. On
the other hand, other transmitters like A and B possess very
close characteristics. Finally, we may have mixed scenarios:
Transmitter E transmits on several frequencies, one common
with transmitter D. In conclusion, RADARs with various
observable characteristics will be easier to identify.
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Fig. 2. Representation of some typical simulated RADARs. The graph shows
the RADARSs in 1 dimension in the frequency plane. Each color represents a
typical simulated RADAR.

Fig. 3 shows the same emitters in the F-PW plane. One
can notice that the transmitters A and B are clearly separated
in the F-PW plane. This shows that incorporating additional
characteristics improves the separability of the transmitters.

Fig. 4 shows the cost matrix between the previous simulated
RADAR classes using frequencies and pulse widths. As pre-
viously explained, some classes are very close because they
have similar characteristics. As an example, classes A and
B are separated by a small distance, while classes B and C
are larger. Therefore, it is expected that class B will be more
frequently confused with class A than with class C.

Now, let us consider the optimal transport plan between
emitters. Fig. 5 shows the optimal transport plan from emitter
(from class) E toward emitters D, F, and G. The cost of moving
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Fig. 3. Representation of some typical simulated RADARs. The graph

represents the RADARs in the F-PW plane. Each color represents a typical

simulated RADAR.
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Fig. 4. Cost matrix between typical RADARs class builds from Frequency
and Pulse Width. Green indicates high transport cost, which means that the
class is very different, and red indicates low transport cost means that the
class has similar characteristics.

the points from E towards those of D is low because the
transmitter D has a very close pulse width and transmits on a
single frequency; all points moved to a very close location. The
displacement cost between transmitter E and G is four times
higher because they do not transmit on the same frequency
bands; they have very different pulse widths, so the points must
make more significant displacements. Note that the optimal
transport distance also considers the proportion of pulses at a
given frequency and pulse width.
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Fig. 5. RADAR E points displacements towards the points of RADARs D,
F and G with the optimal transport in two dimensions.

C. Classification Decision

In order to compute the distance between a set of pulses
and a RADAR class, received pulses are also modeled as a
probability distribution, as follows:

M

1
v=1; > 5t )

m=1

with M the number of pulses in the set. A set of pulses
class is then assigned by identifying the closest RADAR class
in the optimal transport distance sense:

argmin d (p;,v) . Q)
J€ )

j* =

with J the number of emitters classes. The algorithm
identifies the transmitter j* as the true class. To reduce the
computation cost of computing the distances, the received
pulses are binned in frequency and pulse width intervals. With
sufficiently small bin sizes, perturbation of the distance is
small enough so that the order of the distances between the
data and the classes is conserved.

IV. RESULTS
A. Classification example

Fig. 6 shows the result of our classification methodology
applied to emitter 1 from Fig. 1. The plot on the left overlays
the pulses and the three closest emitter classes. The blue dots
fit very well with those on the data. The classifier correctly
identifies the emitter present in the data. The plot on the right
shows us the transport plan between the distribution of the data
and each outputs [15]. Output 2 represents a single-frequency
transmitter, so the data points are all sent to the same location.
Output 3 represents a RADAR that transmits on six different
frequency bands, so the data points are sent on the different

Output 1 respecting the proportions of Output 1; this is why
pulses around a given frequency are not all sent to the same
point.
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Fig. 6. Classification output for set of pulses 1 in two dimensions. The plot
on the left overlap the set of pulses 1 with the first three classes identified by
the algorithm. The plot on the right represents the transport plan between the
data and those of the algorithm’s outputs.

B. Performance evaluation

In order to evaluate the performance of the proposed
methodology, we simulated a dataset containing the pulses of
3608 different emitters that must classified. The noise level
on the different features varies form in each simulation. Tab. I
shows global results of the classification methodology using
one feature (frequency) and two features (frequency and pulse
width). Using only the frequency, 94% of the transmitters are
correctly identified. Thanks to the Optimal Transport cost, one
can rank the classes as follows: the classes are sorted according
to the associated cost. Thus, in 98.8% of the cases, the correct
class is ranked among the two first one. This approach allows
to introduce some flexibility in the classification decision.
Indeed, when the cost of the (two/three) first classes are
very similar, the data could be classified in all these classes,
with almost the same confidence. Then, adding pulse width
as a feature increases the identification rate to nearly 96%.
However, the proportion of ranks higher or equal to three
slightly increases to 0.4%. This is explained by the spread
of the estimated pulse widths, as we can see in Fig 7, which
is not taken into account. The figure shows an example of
misclassification. The one-dimensional classification based on
the frequency allows to correctly identify the true class, as
the pulse frequencies are close to the unique frequency of the
class. The plot on the right shows the transport plan between
the different Outputs using frequency and pulse width. Here,
the bias of the estimated pulse width, and the relative weights
given to frequency and pulse width in the computation of the
distance, make the signal closer to output 1 and output 2 than
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to the true class. Indeed, their pulse width is closer to the
underestimated width of the received pulses.

TABLE I
EMPIRICAL RESULTS OF THE CLASSIFICATION MADE ON 3608 SET OF
PULSES.
Correct classification position | Frequency | Frequency and Pulse Width
First 94.1% 95.8%
Second 5.7% 3.8%
Third 0.1% 0.1%
More 0.1% 0.3%

Cluster 3§ Output 1 - Cost: 83.7 Output 2 - Cost: 113.4 % True Class - Cost: 874.4
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Fig. 7. Example of wrong classification made in two dimensions.

V. CONCLUSION AND PERSPECTIVES
A. Conclusion

In this paper, one has developed a methodology to identify
the emitters present in a RADAR signal. This work assumes
that the different possible emitters have been previously dein-
terleaved. Then, considering an output that corresponds to
(only) one emitter, the proposed method allowed to classify
the transmitter thanks to optimal transport theory in two
dimensions (frequency and pulse width). The results obtained
on the simulated data are very encouraging and allow us to
identify the class of transmitters confidently. Moreover, the
methodology can handle a large number of classes to identify.

B. Perspectives

We assume that the sets of pulses coming from a previous
deinterlacing step contain the pulses of a single transmit-
ter. However, these sets may contain mixed pulses coming
from several transmitters. We are currently developing a new
methodology to deinterlace a RADAR signal better to deal
with the imperfect pre-processing steps. Moreover, to enhance
the classification results, several perspectives are of interest:
First, one could add a third dimension in the optimal trans-
port theory to better discriminate RADARs. As previously

explained, some RADARS can have very similar characteristics
in frequency and pulse width, and it is necessary to add other
characteristics to differentiate them, e.g., the pulse repetition
period (PRI), which is the difference of time of arrival between
successive pulses (6, = t,, —t,—1). However, note that the PRI
cannot be directly integrated into the optimal transport as it
requires pre-processing to be exploited. Indeed, missing pulses
imply significant distortions of the probability density of PRIs.
Then, as mentioned in this work, pulse width errors reduce
the method performance. The robustness of this method with
respect to such errors should be improved. Finally, to propose a
complete classification method, this method should be capable
of detecting emitters that not present in the database.
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