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Abstract—Soft errors, such as bit flips, pose a serious threat
to the functional safety of systems. Thus, ensuring the correct
operation even in case of errors is particularly relevant for safety-
critical applications. In this paper, we present a novel error
detection and mitigation method for parallel FFTs in radar
signal processing. We systematically define small observation
windows in the 2D spectrum to detect peaks caused by soft errors.
This enables protecting FFTs with several orders of magnitude
lower computational overhead compared to related work. We
conduct fault injection experiments to validate our method. Our
experiments show that targets can be reliably detected even at
higher error rates where more than 500 bit flips are present.

Index Terms—fault tolerance, soft error, FFT, radar, signal
processing, automotive

I. INTRODUCTION

With increasing demand for computational performance
and power efficiency, transistor structure sizes have been
continuously shrinking in the past decades. Consequently,
integrated circuits are becoming more susceptible to transient
faults [1]. Such faults are caused by fluctuating temperature
or voltage, electromagnetic interference, or highly energetic
particles, and they can manifest as bit flips when sensitive
regions in an integrated circuit are affected [2]. If such errors
remain undetected, they can lead to silent data corruption,
which is particularly concerning for safety-critical applica-
tions. For autonomous driving, neural networks (NN) are used
to reason on the car’s surroundings based on various sensor
data such as radar, lidar, and video. The susceptibility of
NNs to soft errors, i.e., non-permanent and non-destructive
errors, and methods for improving their robustness has been
investigated previously [3], [4]. However, besides ensuring
the correct computation of the NN itself, the integrity of its
input data is also highly relevant. Previous work investigated
protecting fast Fourier transforms (FFTs), which play a key
role in radar signal processing. Classic approaches like triple
modular redundancy are not desirable in this case because
of the high overhead they entail. An attractive solution to
reduce the computational overhead is leveraging algorithmic
properties to introduce checksums that cover the computa-
tions [5], [6]. During radar signal processing, several FFTs are
performed in parallel. Therefore, instead of protecting each
FFT separately, multiple FFTs can be protected simultane-
ously to further reduce the overhead [7]–[9]. However, the

aforementioned methods focus on single errors and are not
capable of protecting the computations in case multiple errors
occur. In this paper, we investigate the protection of parallel
FFTs in radar signal processing. Specifically, we combine the
FFT’s behavior when affected by faults with characteristics
of the radar signal processing chain to achieve efficient error
detection. To summarize, our contributions are:

• We investigate the impact of soft errors on the radar signal
processing chain. Specifically, we investigate the error
propagation of 2D-FFTs and compare the robustness of
floating-point to fixed-point processing.

• We present and evaluate a new error detection and mitiga-
tion method, which requires less computational overhead
compared to related methods (see Section IV-D).

The remainder of this work is structured as follows. First, we
provide background information on radar signal processing
and present the effect of soft errors in Fourier transforms. In
Section III we introduce our error detection method. After-
ward, the experimental setup is outlined, and the results are
presented and discussed. Section V concludes our paper.

II. BACKGROUND

A. Radar Signal Processing

The basic working principle of a radar sensor is based on
transmitting electromagnetic waves and extracting information
about objects from the received echo signal. For frequency-
modulated continuous wave (FMCW) radars, the transmitted
signal consists of several sinusoidal chirps with increasing
frequency over time (see Fig. 1). To obtain the distance and
relative velocity of an object to the radar sensor, a two-
dimensional FFT of the received signal is computed. The
first FFT, also called range FFT, is computed for each chirp.
Afterward, the extracted frequency components can be con-
verted to a distance to the sensor. The second FFT or velocity
FFT, is computed along a different dimension using the range
FFT’s output (see Fig. 1). In the resulting range-Doppler
(rD) spectrum, distinct peaks can be observed, each associated
with a relative velocity and distance to the sensor. For target
detection, a threshold is used to distinguish targets from noise
in the rD spectrum. A fixed threshold is not desirable as
external interference characteristics are not known in advance
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Fig. 1: Simplified overview of the radar signal processing
chain (FI: fault injection, see Section IV-B).

and can change during system operation. In practice, constant
false alarm rate (CFAR) detectors are employed to adjust the
detection threshold online. Here, a sliding window is used to
estimate the noise floor for each cell in the spectrum. One
example for such a detector is the ordered statistic CFAR (OS-
CFAR). OS-CFAR sorts the elements in the reference window
and uses the k-th element as a noise estimate. For additional
information on radar signal processing, we refer to [10].

B. Effect of Soft Errors in Fourier Transforms

Soft errors, such as bit flips, are single event effects caused
by highly energetic particles. They are not permanent or
destructive and can be reverted, e.g., by rewriting affected
memory cells [2]. Computing an FFT over samples that are
affected by bit flips, can be considered as a FFT over a signal
with added random noise. The resulting spectrum exhibits an
increased noise floor, depending on the magnitude and number
of errors. In the worst case, the noise floor increases to such an
extent that frequency components can no longer be extracted.

Considering the parallel FFTs that are performed during
radar signal processing, errors in the input data create “error
walls” in the two-dimensional spectrum. Depending on the
dimension over which the FFT is computed, they manifest
either vertically or horizontally across the spectrum as shown
in Fig. 2. If such error walls are present after the range FFT, all
subsequent velocity FFTs are affected, too. This distributes the
error across the whole rD spectrum, resulting in an increased
noise floor and thus fewer detected targets. Errors in the input
of the velocity FFT that cause error walls in the rD spectrum,
however, lead to false positive detections.

III. METHOD

To achieve efficient error detection, we combine the FFT’s
behavior when affected by faults with characteristics of the
radar signal processing chain. As shown in Figure 2, errors in
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Fig. 2: Error walls in the range and range-Doppler spectrum
and observation windows (red) for error detection.

the input data of a FFT can manifest as error walls in the two-
dimensional spectrum. A straightforward solution for detecting
such walls is examining the spectrum for vertical or horizontal
lines after each FFT pass. If erroneous FFTs are detected, they
can either be discarded or re-created in subsequent processing
steps. Since errors in the input spread across a FFT’s whole
output, we can focus on smaller observation windows for error
detection instead of analyzing the whole spectrum. For the
range FFT, we select the top of the spectrum as the location
for the observation window (see Figure 2 left). Its width is
defined by the number of chirps in the chirp sequence, the
height is a configurable parameter. As the loss in power of the
received radar signal is proportional to r−4 [10, pp. 54–57],
values in the last few bins located at the top of the spectrum
are small. Therefore, this location is particularly advantageous
for the observation window, as it allows detecting low error
walls that would not be detected if the window is located at the
bottom. For the velocity FFT we use two observation windows,
one on each side of the rD spectrum (see Figure 2 right). Their
height is defined by the number of samples for each ramp,
the width is another configurable parameter. We combine
detected errors of both windows and only report errors that
appear in both. This ensures that possible targets located
at the edges of the spectrum are not interpreted as errors.
Nevertheless, there is a possibility of incorrectly classifying
targets as errors, e.g., this corner case is triggered when two
targets at the same distance to the sensor with same but
opposing velocities are present. This effect can be mitigated
by introducing an additional observation window. However,
this entails an increased computational overhead.

The working principle of our method is as follows:
1) The squared magnitude for each element in the obser-

vation window is computed.
2) An error detection threshold is defined based on the

estimated noise floor of the observation window. It is
obtained by OS-CFAR processing.

3) The mean is computed along the height/width of the
window depending on the FFT stage.

4) The obtained values are compared to the error detection
threshold, resulting in a mask containing the location of
any present error walls.

Using OS-CFAR for dynamic noise estimation enables
parameter-less usage of our detection method. Furthermore, we
assume that a dedicated unit for OS-CFAR is available in the
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radar system, which is reused by our method. For final target
detection with OS-CFAR, an accurate noise estimate increases
detection performance by providing a better separation of tar-
gets and background noise. Our method focuses on detecting
errors, which would otherwise affect the final target detection
after OS-CFAR processing if not mitigated. Therefore, an
accurate estimate of the noise floor is not necessary. A single
noise estimate for the whole observation window is sufficient,
which also reduces the required computational overhead. In
practice, we suggest a similar false alarm rate and window size
as it is used for the subsequent target detection with OS-CFAR.
That way, possible undetected error walls after the velocity
FFT will not result in false positive targets.

While our investigations focus on memory errors affecting
the input data of a FFT, we analyze that our method is also
capable of detecting computational errors to some degree.
Considering the signal flow graph of a FFT, an error origi-
nating in a butterfly stage can be distributed over the entire
output. Therefore, the detection mechanism may not be able to
detect an error wall as it uses only a few bins of the output for
detection. However, errors that occur during the computation
of the range FFT and remain undetected can lead to error
walls after the velocity FFT, which can be detected by our
method (see results of the second experiment in Section IV-C).
Errors during the computation of the velocity FFT may not
be detected. This can be circumvented by adding additional
observation windows and/or increasing their size such that
more bins are included in the error detection.

Overall, our method enables efficient protection of parallel
FFTs in the radar signal processing chain, since it operates
only on a fraction of the spectrum to check whether errors
occurred. Furthermore, apart from determining the error de-
tection threshold, error wall detection and mitigation can be
performed independently and is therefore highly parallelizable.

IV. EXPERIMENTS

A. Measurement Setup

In our experiments we use data collected by an automotive
radar sensor prototype similar to the one in [11]. The multiple-
input multiple-output (MIMO) radar employs a frequency
modulated signal and is mounted in the front of a test vehicle.
It has two sending and 16 receiving antennas for a total of 32
virtual channels. The range and velocity FFTs are performed
over 512 samples and 1024 chirps, respectively. After non-
coherent integration of all virtual channels, the size of the
rD spectrum is 256 × 1024. It is processed by an OS-CFAR
detector with a false alarm rate of 10−6 for target detection.

B. Experimental Setup

We perform multiple fault injection (FI) experiments to
evaluate our error detection mechanism. Furthermore, we
use floating-point and fixed-point data representations and
compare their robustness against soft errors when used in
radar signal processing. For the fixed-point experiments, we
use a word length of 32 bits to match that of the floating-
point experiments. Although smaller word lengths are also
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Fig. 3: Experimental setup.

used in practice, we explicitly use 32 bits to ensure a fair
comparison between the two data representations, since bit
flips are injected based on a bit error rate. Therefore, if one
representation had fewer bits, fewer bit flips would be injected
in total (more information below). For the fixed-point FFT, we
use a radix-2 implementation with convergent rounding [12],
where values are scaled after each stage.

In Fig. 3 an overview of the experimental setup is shown.
For both data types, we conduct two sets of experiments where
bit flips are injected into the input data of either the range or
the velocity FFT (i.e., into the raw data or the range FFT’s
output. See Figure 1). Depending on where faults are injected,
we test different configurations where either both, none, or
just a single FFT pass of the processing chain is covered by
our error detection method. In all cases, the spectrum of each
virtual channel of our MIMO radar is protected separately,
i.e., the error detection threshold and mask for detected errors
are determined for each virtual channel. Based on empirical
analysis, the reference and observation windows for error de-
tection have a height/width of three bins and any detected error
walls are removed by zeroing. All experiment configurations
are investigated using five different radar measurements.

To simulate the effect of bit flips, we randomly generate an
error mask that is applied to the input data of a FFT using
the XOR operation. Each bit in the mask is set depending
on a specified bit error rate (BER). In total, we investigate
six different BERs corresponding to injecting just a single bit
flip to more than 50 000 bit flips. For each BER, we perform
100 individual FI runs to ensure statistical confidence. In each
run we pass the rD spectrum to the OS-CFAR detector for
target detection. Finally, we compare the number of detected
targets and their location in the spectrum (i.e., their distance
and velocity) to the ground truth without faults. Our two
performance indicators to evaluate our method are:

False negative rate (FNR). The proportion of cells in which
no targets have been detected, but which are targets, out of
all cells that actually contain targets. I.e., the proportion of
missed targets to the total number of targets.

False positive rate (FPR). The proportion of cells in which
targets have been detected, but which are not targets, out of
all cells that actually contain no targets. I.e., the proportion of
incorrectly detected targets out of all non-target cells.

C. Results

In this Section the results our FI experiments are presented.
For all configurations listed in Fig. 3, we show the mean and
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Fig. 4: Mean and std. dev. for FNR and FPR of the first set of experiments (errors before range FFT only). Connecting lines
between markers are added for visual guidance.

standard deviation for FNR and FPR computed over all five
radar measurements and the 100 runs for each BER.

Figure 4 shows the results of the first set of experiments
where faults are injected into the raw input data. In case no
error mitigation is used (Fig. 4a), less targets are detected with
an increasing BER. The FPR remains zero for all tested BERs.
This result is in line with the effects outlined in Section II-B.
Faults in the raw input data lead to error walls in the range
spectrum and since these error walls affect each individual
velocity FFT, the error is spread across the whole rD spectrum,
resulting in an increased noise floor. As a result, fewer targets
are detected as the BER increases, since target responses are
swallowed up by the noise floor. The FPR remains zero for all
tested BERs since the noise floor rises uniformly throughout
the rD spectrum. When using our error detection method after
the range FFT only (Fig. 4b), targets can be reliably detected
initially. However, as the BER increases, multiple effects that
influence the error and target detection performance come
into play: (i) At first, error walls are detected and removed
reliably, resulting in low FNRs and FPRs. Removing error
walls creates sidelobes that cause a wider target response in
the rD spectrum. This influences the noise estimate during
OS-CFAR processing, which can lead to masking of weaker
targets and thus an increased FNR. Furthermore, they can be
incorrectly interpreted as targets, increasing the FPR. (ii) With
more and more error walls in the range spectrum, also the
reference window used for determining the error detection
threshold is affected. Consequently, the reference window’s
noise estimate is no longer correct which leads to a higher error
detection threshold. As a result, fewer error walls are removed,
which causes a higher noise floor in the rD spectrum and thus
an increased FNR. Since fewer walls are removed, also fewer
sidelobes are created. Therefore, the FPR decreases again for
higher BERs. A FPR with a maximum of 1% at a BER of
10−5 may seem low, however, in this case it corresponds
to a couple of thousand detected targets. By using our error
detection method after the range and velocity FFT (Fig. 4c),
false positive targets caused by sidelobes due to zeroing in the
range spectrum can be mitigated. However, this entails a slight
decrease in target detection performance at higher error rates.
This is because removing sidelobes in the rD spectrum can
also remove target responses, resulting in an increased FNR.
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Fig. 5: Mean and std. dev. for FNR and FPR of the second
set of experiments (errors before velocity FFT only).

Figure 5 shows the results for the second set of experiments
where errors are injected into the velocity FFT’s input data.
Without error mitigation (Fig. 5a), error walls manifesting in
the rD spectrum directly affect the target detection. When com-
puting the noise estimate for the sliding window during OS-
CFAR processing, error walls can increase the target detection
threshold resulting in masking of targets with a weaker signal
response. Consequently, with an increasing BER, more error
walls cover the rD spectrum, which results in an increased
FNR. At a certain point, the spectrum consists practically only
of noise, so that fewer and fewer targets are detected until
finally none are detected at all. Apart from affecting the de-
tection of actual targets, error walls are additionally interpreted
as targets, too. The FPR shown in Figure 5a initially increases
with an increasing BER and reaches a peak at 10−6, after
which it decreases again. This effect is linked to how targets
are detected with OS-CFAR. At first, the FPR increases with
the increasing number of error walls that are present in the
rD spectrum. However, similar to the FNR, at a certain point
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the spectrum consists of just noise, leading to less detections
overall. Figure 5b shows that up to an BER of 10−6, both
targets are reliably detected and the FPR remains low when our
error detection method is used. In general, removing detected
error walls through zeroing can also remove target responses,
which should consequently increase the FNR. However, here
this does not affect final target detection initially, since target
responses can be preserved due to our MIMO radar setup with
32 virtual channels and its associated high data redundancy.
Similar to previous cases, the error detection threshold is
affected more and more at higher error rates, since more
error walls are present in the spectrum. Therefore, with an
increasing BER, less error walls are detected and removed,
leading to an increasing FNR and FPR.

D. Discussion

Overall, errors before the range FFT have a more severe
impact on target detection, since they spread throughout the
whole rD spectrum. Errors before the velocity FFT on the other
hand cause false positives. The robustness of the investigated
data types w.r.t. reliable target detection is different in each
experiment and whether error mitigation is used or not. In
general, the behavior can be attributed to the value range and
encoding for each data type and the signal processing stage
in which errors occur. For floating-point, bit flips affecting
the mantissa do not alter the value significantly, unlike bit
flips in the exponent. A single error in the exponent before
the range FFT can easily cause a high error wall that raises
the whole rD spectrum’s noise floor such that no targets are
detected. The same error for the velocity FFT affects only
part of the rD spectrum and is therefore less severe. This is
different to fixed-point, where errors are limited to the same
value range as the processed data. While in this case errors
in the raw data can also raise the rD spectrum’s noise floor,
errors are not as drastic and increase the noise floor more
gradually. This is also why the std. dev. is more variable for
fixed-point compared to floating-point. When using our error
detection method, floating-point is performing better at high
BERs compared to fixed-point. The reason for this is that the
magnitude of error walls for fixed-point is within the same
value range as the processed data. This has a greater effect
on the calculation of the noise estimate, and hence the error
detection threshold, than errors walls that lie far outside the
range of values in the processed data. Nevertheless, in practice
fixed-point can be considered more robust, since the magnitude
of erroneous values is limited, and smaller word lengths can be
used. This significantly reduces the number of bits and thus the
attack surface for highly energetic particles, since less data is
stored. Overall, the results show that with our method, targets
can be reliably detected for a BER up to 10−7 and 10−6 for
the range and velocity FFT, respectively, which correspond
to more than 100 and 500 bit flips in our setup. Although
soft errors are rare and protecting FFTs with our method
may therefore be more than required, our approach has less
overhead than related work aimed at detecting single errors.
In Fig. 6 the operations required for protecting the 2D FFT
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Fig. 6: Comparison of the computational overhead for protect-
ing the 2D FFT in our setup with methods proposed in [9].

of our setup are compared to methods proposed in [9], which
use error correction codes (ECC) and sum of squares (SOS)
checks. As stated earlier, we assume that a dedicated unit for
OS-CFAR is present in the system. Therefore, computing the
noise estimate is not included in our overhead.

V. CONCLUSION

This paper presents an error detection and mitigation
method for parallel FFTs in radar signal processing. Our
method only needs to evaluate a fraction of the spectrum to
determine if errors occurred, resulting in low computational
overhead. Experiments show that target detection can be main-
tained even at high error rates where more than 500 bit flips
are present. Furthermore, the method is highly parallelizable
and therefore suitable for efficient hardware implementations.
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