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Abstract—Conventional automotive radar perform range-
Doppler coherent integration (stretch processing) under the
assumption that the range of each object is constant during
the integration interval. This assumption yields an efficient
computation algorithm. However, when the object’s relative speed
is high and/or the coherent integration interval is large, the
range migration is significant with respect to the range resolution,
and as a result, the detection performance of the conventional
range-Doppler coherent integration degrades significantly. The
Radon-Fourier Transform (RFT) is the optimal method (in the
sense of detection performance) for coherent integration with
range migration, however, its complexity is large and may not be
practical for implementation. In this paper, we develop a range-
Doppler coherent integration algorithm that takes into account
the range migration with efficient computation. We utilize the
fact that range migration is a function of the Doppler frequency
and derive an approximation to the RFT. The proposed algorithm
significantly outperforms conventional coherent integration when
the object’s range migration is significant. Furthermore, it
attains the performance of the RFT but with significantly lower
complexity.

I. INTRODUCTION

Automotive radar is a key sensor for automated driving. One
of its main usages is for detection of dynamic vehicles and
motorcycles at relatively long distance. The detection at long
distance requires a large processing gain, which is achieved
by having a relatively long coherent integration interval. On
the down side, when the integration time is long and the target
vehicle relative speed is large the range of the target migrates
significantly (with respect to the range resolution) during the
integration interval [1].

Fast chirp FMCW waveform is commonly used in automo-
tive radars [2], [3], since it enables to utilize a large bandwidth
(high range resolution) with a low rate analog to digital
converter (low power), has high dynamic range, and results
in low side-lobes in the ambiguity function along the range
domain. In FMCW radar, the received sequence of chirps are
multiplied by the transmitted reference chirps, which results in
a sequence of down-converted chirps. Conventionally, range-
Doppler stretch processing is done by 2D fast Fourier trans-
form (FFT) on the sequence of down converted chirps [4]-
[5], where the sequence length is the coherent integration
duration. The conventional 2D FFT stretch processing is
efficient in terms of computation complexity, and is the exact
matched filter processing that achieves maximal signal-to-
noise ratio (SNR) under the assumption that the target’s range
and Doppler are constant during the integration interval.

State-of-the-art automotive radars [6] have a range resolu-
tion of about 10cm, and in order to detect targets at long
range they have a coherent integration duration of about
20ms (which is required to obtain sufficient SNR). Under
these settings, the assumption of constant Doppler frequency
during the coherent integration interval holds, however, the
range migrates significantly (with respect to the radar’s range
resolution) in the case of fast moving targets. For example
when the relative speed is 100kph then the range migration
over 20ms is 55cm, which is larger than five times the range
resolution. In this case the 2D FFT stretch processing results
in a significant degradation in the target SNR, which reduces
the detection probability of the target. Furthermore, even if the
target is detected it is smeared over several range resolution
cells, which reduces the accuracy of the estimated target range.

One approach to overcome this problem, is to apply the
Radon-Fourier transform (RFT) [7] instead of the 2D FFT.
The RFT achieves maximum SNR even when there is range
migration, however, it has significantly higher complexity than
2D FFT (as will be shown in Section III), and therefore may
be impractical for implementation in production automotive
radars. Xu at el. [8] have proposed to apply conventional 2D
FFT to detect the targets and obtain a coarse estimation of the
targets parameters. Then the targets parameters are refined by
applying coherent integration for each individual target while
compensating for the range migration based on the initial
estimated target parameters. This approach is computational
efficient with respect to the RFT, and improves the accuracy
of the estimated target range and Doppler compared to 2D
FFT stretch processing. However, since it primarily relies on
conventional 2D FFT stretch processing to detect the targets it
suffers from degraded detection performance in the presence
of range migration.

In this paper, we develop a range-Doppler coherent inte-
gration algorithm that takes into account the range migration
with efficient computation. We analyze the performance (range
estimation accuracy and detection probability) and complexity
of the proposed algorithm compared to conventional 2D FFT
stretch processing and to RFT, which has optimal matched
filter performance. The developed algorithm achieves the per-
formance of RFT and attains a significant performance advan-
tage over conventional 2D FFT when the targets have range
migration. It has significantly lower computation complexity
than RFT and requires a modest increase in complexity with
respect to 2D FFT, and thus it is practical for implementation
in automotive radar systems.
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II. SYSTEM MODEL AND PROBLEM DEFINITION

A fast chirp FMCW automotive radar [2], [3] is considered.
The sequence of transmitted chirps can be expressed by

x(t) =

M−1∑
m=0

s(t−mTc) , (1)

where Tc is the chirp duration, M is the number of chirps in
the coherent processing frame, and

s(t) =

{
e−j2π(fct+

1
2αt

2), if 0 ≤ t ≤ Tc

0, otherwise ,
(2)

is a single chirp, where fc is the carrier frequency and α is
the chirp slope.

The received reflected sequence of FMCW chirps are down
converted by multiplication with the conjugate transmitted
signal. The resulting sampled down converted chirps for a
single point reflector with unit intensity can be expressed by

y[n,m] = ej2παt0nTsej2πfdmTcej2πα
fd
fc

(nTs+mTc)nTs , (3)

where fd is the reflection point Doppler frequency, Ts is
the sampling interval, t0 is the round trip propagation delay
(from the radar to the reflection point and back), n =
0, 1, .., N − 1, is the index of a sample within a chirp, and
m = 0, 1, ..,M − 1, is the chirp index.

The signal y[n,m] is comprised of three exponents, the
first exponent consists of linear phase shift within each chirp
that is related to the target’s range at the beginning of the
integration interval (t0). The second exponent is the phase
shift along chirps related to the Doppler frequency fd, and the
third exponent is the phase rotation due to the range migration
within chirps and along chirps.

Conventionally, it is assumed that the target range migration
along the sequence of chirps is negligible and hence the
argument, α( fdfc (nTs + mTc)))Tsn, in the third exponent in
(3) is neglected. Under this assumption stretch processing is
performed on y[n,m] by a 2D FFT. Where the first dimension
operates per chirp over index n, and the second dimension
along chirps over index m. The resulting rang-Doppler stretch
processing is given by

Ŷ [k, l] =

M−1∑
m=0

N−1∑
n=0

y[n,m]e−j2πk n
N e−j2πl m

M , (4)

where k, and l, are the range and Doppler bin indexes,
respectively. As mentioned in Section I, the 2D FFT stretch
processing has degraded SNR and smeared range when the
targets speed is high with respect to the radar’s range resolu-
tion.

The Radon-Fourier transform (RFT) is the exact matched
filter processing in the presence of range migration, and it is
given by

Y [k, l] =
M−1∑
m=0

N−1∑
n=0

y[n,m]e−j2πl α
fc

( nTs
TcM

+ m
M )nTse−j2πk n

N e−j2πl m
M .

(5)

The RFT attains the maximal SNR, however the complexity
of calculating (5) for k = 0, 1, .., N − 1 range bins and l =
0, 1..,M − 1 Doppler bins is O(N2M2). On the other hand,
the conventional 2D FFT stretch processing has complexity
of O(MN(log(N) + log(M))), which is about MN times
smaller when M and N are relatively large (as is typically
the case). However the reduced complexity comes with a
performance degradation. The problem at hand is to develop
a range-Doppler coherent integration algorithm that achieves
the RFT performance when there is range migration but with
significantly lower complexity.

III. COHERENT INTEGRATION ALGORITHM

In this section, we derive a coherent integration algorithm
that approximates the RFT in (5) with less computational
complexity. We first neglect the minor range migration within
the chirp duration. Under this assumption we can express (5)
as

Y [k, l] =

M−1∑
m=0

N−1∑
n=0

y[n,m]e−j2πl α
fc

m
M nTse−j2πk n

N e−j2π l
M m.

(6)
Define the discrete time Fourier transform (DTFT) at fre-
quency f of the sequence y[n,m] for n = 0, 1, .., N − 1,
as

Ũ [f,m] =

N−1∑
n=0

y[n,m]e−j2πfTsn. (7)

By substituting (7) into (6) we have that

Y [k, l] =

M−1∑
m=0

Ũ

[
k +∆(l,m)

NTs
,m

]
e−j2π l

M m, (8)

where ∆(l,m) = l αfc
m
MNTs.

We approximate that the amplitude of the DTFT at a non-
integer frequency index, k+∆(l,m), is close to the amplitude
of the DTFT at the integer bin that is closest to k +∆(l,m)
since their frequency difference is small, i.e.,∣∣∣∣Ũ [

k +∆(l,m)

NTs
,m

]∣∣∣∣ ≈ ∣∣∣∣Ũ [
k + ⌊∆(l,m)⌉

NTs
,m

]∣∣∣∣ , (9)

where ⌊x⌉ is the closest integer value of x (round operation).
Under the approximation in (9) we have that

Ũ

[
k +∆(l,m)

NTs
,m

]
=∣∣∣∣Ũ [

k +∆(l,m)

NTs
,m

]∣∣∣∣ ej∠Ũ[ k+∆(l,m)
NTs

,m] ≈∣∣∣∣Ũ [
k + ⌊∆(l,m)⌉

NTs
,m

]∣∣∣∣ ej∠Ũ[ k+∆(l,m)
NTs

,m] =

Ũ

[
k + ⌊∆(l,m)⌉

NTs
,m

]
ejϕ(k,l,m),

(10)

where

ϕ(k, l,m) = ∠Ũ
[k +∆(l,m)

NTs
,m

]
−∠Ũ

[k + ⌊∆(l,m)⌉
NTs

,m
]
,

(11)
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and ∠x denotes the phase of x.
Denote U [k,m] as the kth bin of the discrete Fourier trans-

form (DFT) of the sequence y[n,m] for n = 0, 1, .., N − 1,
i.e.,

U [k,m] =

N−1∑
n=0

y[n,m]e−j2π k
N n. (12)

Note that Ũ
[
k+⌊∆(l,m)⌉

NTs
,m

]
is the DFT of y[n,m] at bin

k + ⌊∆(l,m)⌉, thus

Ũ

[
k + ⌊∆(l,m)⌉

NTs
,m

]
= U

[
k + ⌊∆(l,m)⌉,m

]
. (13)

By substituting (13) into (10) and then the result into (8) we
obtain that

Y [k, l] ≈
M−1∑
m=0

U [k + ⌊∆(l,m)⌉,m] e−j(2π l
M m−ϕ(k,m,l)).

(14)
Next, we derive the expression for ϕ(k,m, l). By substitut-

ing (3) into (7), and neglecting the range migration within the
chirp we have that

Ũ [f,m] = ej2πfdmTc

N−1∑
n=0

ej2π(αt0+α
fd
fc

mTc−f)nTs . (15)

Replacing the summation in (15) by the known identity (see
(4.2.49) in [9])

N−1∑
n=0

ejωn =
sin(ωN/2)

sin(ω/2)
ejω(N−1)/2, (16)

with ω = 2π(αt0+α fd
fc
mTc−f)Ts, and then substituting the

result into (11) yields that

ϕ(k,m, l) = π

(
N − 1

N

)(
∆(l,m)− ⌊∆(l,m)⌉

)
, (17)

where ϕ(k,m, l) is independent of k. Finally, by substituting
(17) into (14) we obtain a simplified approximation to the
RFT, which is given by

Y [k, l] ≈
M−1∑
m=0

U [k + ⌊∆(l,m)⌉,m] ·

e−j2π( l
M m−N−1

2N (∆(l,m)−⌊∆(l,m)⌉)). (18)

The proposed coherent combining in (18) can be interpreted
as a modified DFT hence we refer to it as range migration DFT
(RMDFT). THE RMDFT can be efficiently computed as fol-
lows. First, compute the conventional range stretch processing
by FFT on the samples of each individual down converted
chirp, which results in U [k,m] for k = 0, .., N − 1, and
m = 0, ..,M − 1. Second, obtain Doppler stretch processing
per each range bin index k and Doppler bin index l, by
selecting the sequence of range bins U [k + ⌊∆(l,m)⌉] for
chirps m = 0, ..,M − 1, and coherently combining them
with the phase argument in the exponent of (18), which is a
function of the Doppler bin. The pseudo code of the algorithm
is described in Algorithm 1.

R
a
n
g
e
 [

In
d
e
x
]

Chirp [Index]

2D FFT2
RFTRR
RMDFT

Fig. 1: Range-Doppler stretch processing methods.

Process Complexity Ratio W.R.T 2D FFT
2D FFT O(NM(log(N) + log(M)))

RFT O(N2M2) O( NM
log(M)

)

RMDFT O(NM(log(N) +M)) O( M
log(M)

)

TABLE I: Complexity of stretch processing methods.

Fig. 1 illustrate the difference between the conventional
2D FFT stretch processing, RFT and the proposed RMDFT.
Each column in the grid map of the figure represents the
range FFT output of a different chirp. In conventional stretch
processing, the range is constant along chirp (blue curve).
In RFT, the range migrates continuously along the chirps
(red plot), and in RMDFT (green plot) the range migrates
in steps due to the quantization of the range migration to
integer range bin indexes. The offset in the range bin samples
between the red and green result in an amplitude and phase
offset. The amplitude offset is neglected and the phase offset
is compensated by the term ϕ(k,m, l).

As for the complexity of RMDFT. Considering the case
that the number of range bins is equal to the number of
samples per chirp, N , and the number of Doppler frequency
bins is equal to the number of chirps, M . The complexity
of computing the range stretch processing by FFT for each
chirp is O(MNlog(N)). The complexity of computing the
Doppler stretch processing for M Doppler bins per each range
bin is O(NM2). Hence the total complexity of the proposed
RMDFT is O(NM(log(N) +M)). The computational com-
plexities of the conventional 2D FFT range-Doppler stretch
processing, RFT and RMDFT are summarized in Table I.
The complexity of RMDFT is M/log(M) times higher than
conventional 2D FFT stretch processing, and by a factor of N
smaller than RFT. Typically in automotive radar N and M are
in the range (256− 2048), hence the complexity reduction of
RMDFT with respect to RFT is significant.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
method using simulation and real radar field experiment.

A. Simulation tests

For the simulation tests we used the following radar pa-
rameters. Carrier frequency of 77GHz, bandwidth of 1GHz,
chirp duration of Tc = 35µs, single Rx and Tx channels,
sampling frequency of 1/Ts = 22.2MHz, and relatively long
coherent integration duration of 72ms with M = 2048 chirps.
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Algorithm 1 Range Migration DFT (RMDFT)

Input: y[n,m], n = 0, 1, .., N − 1, m = 0, 1, ..,M − 1
Output: Y [k, l], k = 0, 1, ..,K − 1, l = 0, 1, .., L− 1
Initialization:
% Calculate modified Doppler DFT matrix
for m = 0 : M − 1 do ▷ Loop on chirps

for l = 0 : L− 1 do ▷ Loop on Dopplers
D[m, l] = e−j2π( l

M m−N−1
2N (∆(l,m)−⌊∆(l,m)⌉))

end for
end for
Coherent integration computation:
% Perform range FFT per chirp
for m = 0 : M − 1 do ▷ Loop on chirps

U [:,m] = FFT(y[:,m])
end for
% Perform Doppler DFT with range migration
for k = 0 : K − 1 do ▷ Loop on range bins

for l = 0 : L− 1 do ▷ Loop on Doppler
r = zeros(M, 1)
for m = 0 : M − 1 do ▷ Loop on chirps

r[m] = U [k + ⌊∆(l,m)⌉,m]
end for
% Multiply with modified Doppler DFT module
Y [:, l] = rTD[:, l]

end for
end for

For all the tests in this section we simulated a scenario with a
point target in front of the radar at range 29.75m that moves
towards the radar at speed of 187kph. In this setting the range
migration over the coherent integration duration of 72msec is
3.7m, while the radar’s range resolution is 15cm.

Fig. 2a presents the range FFT output per chirp. The y-
axis is the range FFT and the x-axis is the chirp index. The
figure shows that the range migration is significant with respect
to the main lobe width of the range FFT output (the range
resolution).

Fig. 2b, presents the result of the conventional range-
Doppler 2D FFT stretch processing. Fig. 2c shows the range-
Doppler stretch processing of the proposed RMDFT (Algo-
rithm 1). The correct target range and Doppler is marked
by a white cross in both figures. It is clearly seen that the
range-Doppler main-lobe spread in the case of RMDFT is
significantly smaller than in the case of the conventional
stretch processing. Moreover, the center of the peak in the
range-Doppler spectrum of RMDFT is at the correct target
range and Doppler (white cross), while the main-lobe peak in
the conventional stretch processing has an offset in range and
Doppler with respect to the correct target range and Doppler.

Fig. 2d shows the range cut at the Doppler frequency of the
peak in each one of the range-Doppler images in Fig. 2b and
Fig. 2c. The blue plot is the range cut of RMDFT and the red
plot is the range cut of the conventional stretch processing. For
reference we also add the range cut of the RFT (black dashed
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Fig. 2: Stretch processing performance for dynamic target.
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Fig. 3: Range estimation MSE.

plot). It is realized that the result of RMDFT is similar to the
RFT, and both obtain a higher intensity with narrow spread
in the vicinity of the target compared to the conventional 2D
FFT stretch processing.

Figs. 3-4 presents the range estimation mean square error
(MSE) and Doppler MSE vs. SNR for the test scenario of a
single point reflector. There were 1000 Monte Carlo experi-
ments per each SNR point. In each experiment, the estimated
range was the range of the range-Doppler spectrum peak. The
MSE of the proposed method is similar to the MSE of RFT,
and both achieve the same performance as the conventional
stretch processing with 5 dB less SNR. Fig. 5 presents the
receiver operating characteristic (ROC) of RMDFT, RFT, and
the conventional 2D FFT stretch processing for the case of a
point reflector with 13 dB SNR. The detection performance of
RMDFT are similar to RFT and both are significantly better
than the conventional stretch processing.
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B. Radar experiment

The performance of the proposed methods was also evalu-
ated in a field experiment using an automotive 77GHz radar.
The radar had a chirp duration of Tc = 35µs, bandwidth of
1GHz, sampling frequency of 1/Ts = 25MHz, and a long
integration duration of 230ms. In the test scenario there was a
target vehicle that was moving towards the radar at low speed
of 36kph. The range migration in this case was 2.3m, which is
severe with respect to the range resolution, which was 15cm.

The range-Doppler stretch processing results of the con-
ventional 2D FFT processing and RMDFT for this test case,
are presented in Fig. 6a, and Fig. 6b, respectively. The cor-
responding range cut at the Doppler of the peak for these
two images is shown in Fig. 6c. It is realized that similar to
the results in the simulation, the proposed algorithm attains a
relatively narrow spread in the range-Doppler spectrum, and
even more importantly, achieves about 10dB higher SNR than
conventional processing (as observed in Fig. 6c).

V. CONCLUSION

In this paper, we developed a coherent integration algorithm
for a fast chirp FMCW automotive radar that is robust to range
migration during the integration interval and is efficiently
computed. The performance of the method was evaluated with
simulation and real radar measurements. The algorithm attains
a significant performance advantage in the probability of
detection and in the MSE of the range and Doppler estimation
compared to conventional stretch processing when the range
migration is significant with respect to the range resolution.
Furthermore, it attains the performance of the Fourier-Radon
Transform, which is optimal in the sense of maximal SNR, but
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Fig. 6: RMDFT and conventional 2D FFT stretch processing
results for real radar measurements of a vehicle target.

with the advantage that it has significantly lower computational
complexity and thus is practical for implementation. The
proposed algorithm can accurately detect targets with high
speed at long distance by exploiting the SNR gain of long
integration duration and large radar bandwidth (which provides
high range resolution) without suffering from performance
degradation due to range migration.

REFERENCES

[1] O. Longman and I. Bilik, “Spectral Radon–Fourier transform for automo-
tive radar applications,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 57, no. 2, pp. 1046–1056, 2020.

[2] Z. Tong, R. Renter, and M. Fujimoto, “Fast chirp FMCW radar in
automotive applications,” in IET International Radar Conference, pp. 1–
4, IET, 2015.

[3] O. Bialer, A. Jonas, and T. Tirer, “Code optimization for fast chirp FMCW
automotive MIMO radar,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 8, pp. 7582–7593, 2021.

[4] R. Wan, Y. Song, T. Mu, and Z. Wang, “Moving target detection using
the 2D-FFT algorithm for automotive FMCW radars,” in International
Conference on Communications, Information System and Computer En-
gineering (CISCE), pp. 239–243, IEEE, 2019.

[5] I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini,
M. Musni, and K. Geary, “Automotive MIMO radar for urban environ-
ments,” in IEEE Radar Conference (RadarConf), pp. 1–6, IEEE, 2016.

[6] I. Bilik, et al., “Automotive multi-mode cascaded radar data processing
embedded system,” IEEE Radar Conference, pp. 372–376, 2018.

[7] J. Xu, J. Yu, Y.-N. Peng, and X.-G. Xia, “Long-time coherent integration
for radar target detection base on Radon-Fourier transform,” in IEEE
Radar Conference, pp. 432–436, IEEE, 2010.

[8] Z. Xu, C. J. Baker, and S. Pooni, “Range and Doppler cell migration in
wideband automotive radar,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 6, pp. 5527–5536, 2019.

[9] J. G. Proakis and D. G. Manolakis, “Digital signal processing,” 4th
Edition, Pearson Education India, 2007.

1885


