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Abstract—Robust and accurate sensing is of critical importance
for advancing autonomous automotive systems. The need to
acquire situational awareness in complex urban conditions using
sensors such as radar has motivated research on power and
latency-efficient signal acquisition methods. In this paper, we
present an end-to-end signal processing pipeline, capable of
operating in extreme weather conditions, that relies on sub-
sampled radar data to perform object detection in vehicular
settings. The results of the object detection are further utilized to
sub-sample forthcoming radar data, which stands in contrast to
prior work where the sub-sampling relies on image information.
We show robust detection based on radar data reconstructed
using 20% of samples under extreme weather conditions such
as snow or fog, and on low-illuminated nights. Additionally, we
generate 20% sampled radar data in a fine-tuning set and show
1.1% gain in AP50 across scenes and 3% AP50 gain in motorway
condition.

Index Terms—Deep learning, compressed sensing, object de-
tection, radar.

I. INTRODUCTION

A thorough understanding of surroundings is vital for the
safety of autonomous driving systems. Similar to humans who
while driving rely on multiple sensor information such as
sound and vision, these systems acquire data from a variety of
sensors including e.g. image, radar and LIDAR. Among those,
radar was demonstrated to enable accurate object detection
whether used in conjunction with other sensing modalities
(e.g., images) [1]–[4] or alone [5]–[11]. The ability to achieve
accurate object detection without relying upon data other than
radar is critical in extreme weather conditions such as snow,
fog or rain where the image sensors may struggle to provide
the information needed to develop situational awareness [12].

When a sensor rapidly collects information about a vehicle’s
environment, it is necessary to reduce the data rate while
maintaining the quality of acquired information. To this end,
signal acquisition often relies on compressed sensing (CS)
to collect data at a sub-Nyquist rate without compromising
the quality of information [13]. The CS algorithms typically
exhibit a trade-off between signal reconstruction quality and
sampling rate. In [14], the CS framework is utilized to acquire
Synthetic Aperture Radar (SAR) data and achieve robust
reconstruction with 70% of the samples. In [15], authors
demonstrate efficient reconstruction of a frequency-modulated
continuous wave (FMCW) radar using 40% of the samples.

The authors are with the Department of Electrical and Computer
Engineering, The University of Texas at Austin. E-mails: madhumithasak-
thi.iyer@utexas.edu, tewfik@austin.utexas.edu, arvinte@utexas.edu,
hvikalo@ece.utexas.edu. code:https://github.com/Madhusakth/RADIATE-
Adaptive-CS

A CS-based signal acquisition methodology for noise radar
with a 30% sampling rate was presented in [16]. The authors
of [17] compare the performance of Orthogonal Matching
Pursuit (OMP) and Basis Pursuit De-noising (BPDN) in ap-
plications to the direction-of-arrival estimation problem; note
that while OMP achieves more accurate reconstruction, it
generally requires more measurements than basis pursuit [18].
This motivates the use of the basis pursuit (BP) algorithm in
our current work.

Adaptive CS is a technique used to increase the sampling
rate for important signal regions [19], [20], [21]. In [19],
the authors present a pulsed radar undersampled acquisition
method that utilizes the previously received pulse interval
and applies a constant false alarm rate (CFAR) detection
technique to determine the importance coefficients for the
present interval. In [20], adaptive CS is utilized in static
settings to improve target tracking performance. In contrast, in
the current paper for an autonomous vehicle, while both the
vehicle and objects are potentially moving, we use adaptive
CS algorithm for radar acquisition. Finally, [21] presents an
adaptive CS algorithm which aims to optimize the measure-
ment matrix in a setting where only the targets are moving,
leading to increased performance but, this also increased the
computational complexity of the algorithm. In the proposed
approach, the measurement matrix size is increased for certain
regions of a radar frame using linear programming (LP)
problem formulation; this allocates a larger sampling budget to
important regions while keeping the overall sampling budget
and reconstruction complexity under control.

In this paper, we develop an efficient signal acquisi-
tion/processing pipeline for radar-based object detection that
uses the detection result from the current frame to sub-sample
the subsequent radar frame via adaptive compressed sensing.
In particular, we build upon [22] where the results of image-
based object detection were used to identify the important
regions in radar. To accommodate all weather conditions, the
approach in the current paper removes the need for image
data and instead relies on radar-based object detection results
for the subsequent radar frame. We test our sub-sampled
radar on an object detection task and show performance
comparable to the fully-sampled radar. In particular, we test
the method on the RADIATE dataset [23] collected in extreme
weather conditions and demonstrate robust detection based on
radar data acquired using only 20% of the samples. Finally,
since task-based fine-tuning is known to improve the network
performance, we generated 20% sampled radar data and used
the sub-sampled radar frames to fine-tune the object detection
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Fig. 1. The overall sampling pipeline for every 20 frames across scenes.

network. This resulted in 1.1% gain in AP50 across all the
scenes and 3% gain in AP50 in the motorway condition.

II. METHOD

A. Data

The RADIATE dataset [23] was collected in multiple ex-
treme weather conditions, and consists of radar, lidar, camera,
GPS sensor data. The radar data was collected by the Navtech
CTS350-X with 360°Horizontal Field of View (HFoV) and
100-meter range at 4Hz, resulting in a range-azimuth image
of size 400x576 where the rows represent the angle and the
column represent the range. The set contains 300 hours of
annotated radar data. In addition to the sensor data, the authors
released object annotation on the Cartesian radar images.
Although the released annotations are fine-grained, similar to
the [23], we classify objects as vehicle or background by
defining the vehicle class as either car, bus, bicycle, truck,
van or motorbike. We selected about 20 frames for each
night, snow, foggy, motorway and city scene conditions, and
used them to test our acquisition algorithm. In the fine-tuning
case, we generated 200 20% sampled radar data based on the
previous frame’s object detection result.

B. Adaptive radar sampling

Fig. 2. The 3x3 sampling pattern for small objects, 5x5 sampling pattern for
big object and T-shaped pattern for objects beyond 50m from the AV.

In adaptive CS, the measurement region is split into blocks
and the number of measurements allocated to each block varies
according to a parameter. In each of the blocks, standard
CS is performed by collecting m measurements. To ensure
robust reconstruction using the compressed measurements, the
following assumptions are made. First, the measured signal
is sparse in some domains. Specifically, we assume that the
signal is sparse in the Discrete Cosine Transform (DCT) do-
main. Second, the measurement matrix exhibits the restricted
isometry property [24]. In each block, given the original signal
x ∈ Rn acquired using the random measurement matrix
ϕ ∈ Rmxn, we obtain measurements y ∈ Rm. The original
signal x is recovered using the basis pursuit (BP) algorithm

as minx ∥θx∥1 s.t. ϕx = y with θ as the DCT transformation
matrix [25].

In the RADIATE dataset, the radar data is captured at 4Hz,
i.e., every 0.25 seconds. The radar frame in the polar domain
of size 400×576 is split into 20×48 sized blocks; this amounts
to 18°and 8.4 meters in range. In the baseline acquisition
algorithm (Standard-CS) that deploys a uniform sampling rate,
all the blocks were acquired using the same sampling rate of
10%, 20% or 30%. That is, for each 20×48 sized block, in the
case of 10% sampling rate, 96 samples were acquired using the
measurement matrix and this information was used to recon-
struct the original block using the BP algorithm. Similarly, for
a radar frame of size 400× 576, all 240 blocks were sampled
and reconstructed to form the 10% uniform sampled radar
data. In the proposed algorithm, as shown in Figure 1 the first
frame is fully sampled and processed by the object detection
network. However, the acquisition of radar data takes place in
the polar domain. Specifically, in case of Navtech hardware,
400 measurements are acquired in each cycle, resulting in a
360°HFoV and 100 meters in range data. The polar data is
converted to the Cartesian domain which leads to bird-eye
view radar images. In [23], object annotations are provided
in the Cartesian domain and thus the network is trained to
perform object detection by processing this Cartesian radar
data. Once the bounding boxes are predicted for a given frame,
the object’s center is converted to polar coordinates which are
then used to identify the block in which the object is present.
Since the next frame is acquired in 0.25 seconds, the region
surrounding the current radar block is also marked important
in order to account for the motion of the detected object as
well as the motion of the Autonomous Vehicle (AV).

Each polar block covers about 8.4 meters in length; this
is sufficient to capture the moving vehicle within the adjacent
block while the object moves at most 80 miles per hour. Hence,
in Rad-info-1, if the detected object is small – for example,
a car or motorbike – then the 3 × 3 block sampling pattern
shown in Figure 2 is chosen to identify important blocks.
However, if the object is large – such as a truck or bus –
the 5 × 5 block sampling pattern is selected instead. Since a
larger object may span across two radar blocks (the length of
a truck or a bus could be around 14 meters), it is necessary to
cover two adjacent blocks around the vehicle. Also, while the
radar data is converted from polar to Cartesian domain, the
polar blocks closer to the autonomous vehicle will translate to
a smaller area in the Cartesian domain while the more distant
polar blocks will occupy a larger area in the Cartesian domain.
In the case of Rad-Info-2, motivated by the above reasoning,
a T-block sampling pattern is used, where only adjacent polar
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blocks that are close to the autonomous vehicle are chosen
while considering additional polar blocks which are far away
from the vehicle. This ensures that a considerably larger
area around the important object is sampled while preserving
sampling rates from closer polar blocks that translate to a
smaller area in the Cartesian domain. The T-block sampling
pattern is used instead of the 5×5 block and we use the 3×3
block in case of small objects that appear within 50 meters
range. In order to give importance to objects that appear very
close to the AV, we also sample 3 adjacent blocks on either
side of the predicted object while the object is within 16 meters
of the AV in a given frame.

Once the number of important and other polar blocks are
identified, we use LP with the constraints specified below to
determine the sampling rate for the important and other blocks.
For any vector x ∈ R2, let

f(x) = I.w.h.x1 +O.w.h.x2.

Then, we have the following linear program

max
x≥0

f(x)

s.t. x1 >= 1.1x2

f(x) ≤ S, x1l ≤ x1 ≤ x1u,

x2l ≤ x2 ≤ x2u.

In the above LP, w is the width of 48 (range), h is the height
of 20 (azimuth) of the block, I denotes the total number of
important blocks, and O is the total number of other blocks. In
total, since the 400×576 frame is split into 20×48, there are
240 blocks. x1 is the sampling rate for important blocks and
x2 is the sampling rate for the other blocks. The f(x) < S
condition is used to limit the number of samples – e.g., to
10% or 20% or 30% of the total samples (400x576). The
condition x1 >= 1.1x2 aids in ensuring that the sampling rate
for the important regions is higher than for the other regions.
Finally, the lower bound for x1 is 0.1, 0.2, and 0.3 for the
three sampling rates 10%, 20%, and 30%, respectively, while
the upper bound is 0.55. The lower bounds were chosen to
ensure that the sampling rate is at least as in the standard-
CS case, while the upper bound was determined such that
the reconstruction matches that of the original. In case of x2,
the lower bound was set to 0.07 to ensure there are enough
samples to support reconstruction, and the upper bounds were
set to 0.1, 0.2 and 0.3 for 10%, 20% and 30% sampling
rates, respectively, since the number of measurements could be
limited due to lack of object of interest in the other regions.
Once the sampling rates are determined by solving the LP,
they can be used for the subsequent radar frame and the
reconstructed radar is used anew for object detection; this, in
turn, is further used for important region determination, and
the loop continues for 20 frames. Therefore, in case of 10%
sampling rate, S is set to 23040 (10% of 400×576) and these
measurements are adaptively allocated across the important
and other regions of the radar frame based on the LP results

while maintaining the overall sampling budget to be within
10% or 23040 measurements for 10% sampled radar data.

C. RAD-Net

The network, proposed in [23], takes a single Cartesian
radar frame as input and predicts bounding boxes and classes.
The RAD-Net is a modification of the Faster-RCNN [26]
network with pre-defined anchor sizes and a single class
prediction head. The network is trained on both good and bad
weather condition data using ResNet-50 [27] as a backbone.
We generate the fine-tuning dataset using a pipeline similar
to the one proposed in Figure 1. First, the fully sampled
radar data is used as the first frame to predict important radar
regions for the second frame; that information is then utilized
to sub-sample the second radar frame. For the third radar
frame, we rely on the original second radar frame to predict
bounding boxes and important blocks, and use this information
to reconstruct the frame. Proceeding in this way, 200 images
were generated as the fine-tuning set.

III. EXPERIMENTAL RESULTS

We tested the above algorithm on 5 scenes: city, motor-
way, night and snow with 20 frames each, and foggy with
18 frames. We report the standard AP50 metric [23], the
average precision at IoU of 0.5 and AP, the average precision
calculated and averaged across IoU ranging from 0.50 to 0.95.
The standard-CS resulted in a poor reconstruction quality and
hence low AP50 of 6.3 while using 10% of the samples, 34.6
for 20% of the samples, and 47.6 for 30% of the samples.
Additional reconstruction experiments that relied on 40% of
the samples in the standard-CS setting led to 54.5 AP50
and 21.5 AP. Moreover, using 50% of the samples yielded
56.3 AP50 and 23.1 AP, while using 55% of the samples
yielded 56.7 AP50 and 23.3 AP. Given these performances,
we chose 55% as the upper bound sampling rate for our
algorithm. Across all the sampling rates shown in Table I, our
algorithm consistently outperforms the standard-CS algorithm
with at least 10% AP50 difference in case of 20% and 30%
data sampling rates. For Radar-info-2, the T-block sampling
pattern and assigning importance to the region closer to the
AV yielded 54.2 AP50 and 22.5 AP in case of 20% sampling
rate, outperforming Radar-info-1 which achieved 47.9 AP50
and 20.9 AP. We conjecture that by saving on sampling rate in
the regions adjacent to the object and thus reducing the total
number of important blocks helps maintain a higher sampling
rate at the remaining important blocks, leading to an improved
reconstruction quality and object detection. This emphasises
the need to precisely identify the region wherein an object of
interest is present, and allocate most of the sampling resources
to that region to ensure accurate reconstruction. In the case of
the 30% sampling rate, the reconstruction using Rad-info-2
achieves AP almost as same as that of the scheme using all
radar data. In Figure 3, we show detection results across the
baseline and our proposed algorithm on a frame from fog and
city conditions.
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Fig. 3. Object detection on original radar, standard-CS, and on data sampled at 20% rate and reconstructed using Rad-Info-1 and Rad-info-2.

TABLE I
RADAR RECONSTRUCTION RESULTS [AP/AP50]. ORIGINAL RADAR

AP50: 60.6 AND AP: 23.4

Sampling rate 10% 20% 30%

Standard-CS 6.3/2.4 34.5/13.1 47.6/18.9
Radar Info - 1 29.3/12.0 47.9/20.9 56.7/23.3
Radar-Info - 2 34.6/14.9 54.2/22.5 57.6/23.8

TABLE II
FINE-TUNING RESULTS [AP/AP50] FOR 20% SAMPLED RADAR DATA. FT:

FINE-TUNING

Train-set Overall city foggy snow night motorway

Before
FT

54.2 54.8 72.8 58.9 85.0 39.9
22.5 22.7 46.0 28.5 47.6 11.4

Original 53.5 54.8 72.7 58.5 81.2 39.8
22.2 22.7 46.0 27.4 46.6 11.4

20%
radar

55.3 55.8 72.4 57.9 85.1 42.9
22.3 23.0 46.4 26.2 46.5 11.9

Since only the first radar frame is fully sampled, we also
analyse the AP/AP50 results averaged across different scenes
for each frame to ensure no propagation error has affected
the reconstruction quality of the subsequent frames. Figure 4
shows AP and AP50 for each frame on the original, 10%,
20%, and 30% sampled radar frames. The first frames yield
the same AP since they are fully sampled in all cases. In
the subsequent frames, at 20% and 30% sampling rates, the
AP curve follows the performance of the original radar AP
curve until the 20th frame. However, AP performance for 10%
sampled radar data deteriorates, especially from the 7th to the
11 th frame. Similarly, in the case of 20% and 30% sampled
radar frames, AP50 closely follows AP50 of the full radar data

scheme, i.e., there is no evidence of propagation error.

Fig. 4. AP/AP50 evaluated per frame across scenes.
Finally, we fine-tune the network on the 20% sampled re-

constructed radar data. We hypothesize that tuning the network
to predict objects on the sub-sampled radar data should aid
in improving detection accuracy since the network learns to
detect objects better in regions sampled at a higher rate than
in other sub-sampled regions. The object detection results on
the fine-tuned network are shown in Table II. In the first row,
we show the detection results of the 20% sampled radar data
reconstructed using the Rad-Info-2 algorithm. Without fine-
tuning, the achieved AP50 and AP were 54.2 and 22.5, re-
spectively. We use 200 images for fine-tuning, set the learning
rate to 10−6, and fine-tune for 100 iterations, with a batch
size of 2. This results in an overall AP50 of 55.3 and AP
of 22.3. Although there is a slight drop in AP, the overall
AP50 increases by more than 1%; in the case of the motorway,
AP50 increases by 3% while AP also slightly improves. As
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an ablation study, we also fine-tune the network with the
fully sampled 200 radar frames to show the benefit of fine-
tuning using the 20% sampled radar data. Fine-tuning with the
original radar data decreases the overall AP50 to 53.5 and AP
to 22.2, indicating rapid overfitting. Therefore, in the case of
a populated environment with many objects such as a city or
motorway, where the sampling budget is shared across many
objects and a wider region in the radar frame, fine-tuning with
sub-sampled data improves the detection performance.

IV. CONCLUSION

In this paper, we present an end-to-end radar acquisition
and radar-based object detection pipeline. The sub-sampled
radar data is processed to identify important objects under
multiple extreme weather conditions such as snow and fog;
the location/region of the important object is used as prior
knowledge for adaptive CS in the subsequent radar frame. We
tested our algorithm on the RADIATE dataset across 5 scene
conditions with about 20 frames each. In our experiments, the
reconstruction based on data sampled at 20% rate shows an
overall AP50 of 54.2 and AP of 22.5 detection performance,
while the original data yields AP50 of 60.6 and AP of 23.4.
By increasing the sampling rate to 30% our method results in
AP50 of 57.6 and AP of 23.8, i.e., it achieves the original AP
while AP50 that is lower than the original by 3%. When using
the 20% sampling rate, the achieved AP is 1% lower than the
original while AP50 is 6% lower. However, across all sampling
rates, the proposed algorithm consistently outperforms the
standard-CS baseline. Finally, we generated 200 radar frames
sampled at 20% and fine-tuned the object detection system,
demonstrating 1.1% improvement in overall AP50 and 3%
AP50 gain in case of motorway scene.
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