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Abstract—In this paper, we focus on the unimodular waveform
design with good correlation property, i.e., with low integrated
sidelobe level (ISL). In contrast to existing approaches that
commonly involve constraints on the moduli of waveform elements,
we come up with the idea of designing the waveform via
directly optimizing its phase values. Using this idea, the standard
ISL-minimization based waveform design is converted as an
unconstrained optimization problem with respect to the phase
values of waveform elements, which avoids the repetitive procedure
of projecting non-unimodular complex values into the best
approximations of constant magnitudes. To this end, we first
reformulate the ISL metric into a function of the phase values
to be obtained for the waveform, and then solve the new
unconstrained ISL-minimization-based waveform design using
majorization-minimization techniques. The first-order gradient
of the reformulated objective function is derived, by which the
majorant of the objective is elaborated. Based on this, we finally
tackle the design via iterations, at each of which we obtain a
closed-form solution with fast implementations. An algorithm is
proposed, with whose simpleness and effectiveness are verified
by simulations.

Index Terms—Integrated sidelobe level, gradient, majorization-
minimization, phase optimization, unimodular waveform design.

I. INTRODUCTION

Waveform design has been a research field of significant
interest over several decades [1]–[6], for which the relevant
research is continuously updating witnessed by the emergence
of new developments in radar [2], sensing [3], communications
[7], etc. It has been widely employed in radar signal
processing to attain superiorities such as improved resolution
[8], better delay-Doppler ambiguities [9], enhanced robustness
on parameter estimation [10], [11], etc. Therein lie the high-
quality waveform or signaling strategies.

To obtain certain desirable characteristics of waveforms,
polyphase-coded waveforms with constant modulus are
commonly employed. Such type of waveform is typically
designed on the basis of some criteria. For example, it can
be obtained in terms of the minimization/maximization on
correlation/sidelobe levels, mutual information or entropy [12],
signal-to-interference-plus-noise ratio (SINR) [13], Crame-Rao
bound [14], AF shaping [9], etc. Among this criteria, the one
that relates to the minimization of correlation levels (or sidelobe
levels) of waveform are the most commonly used, which
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typically involves optimizations on the integrated sidelobe level
(ISL), weighted ISL (WISL), or peak sidelobe level (PSL) of
waveforms [3].

There already exist studies that achieve good correlation
properties from the perspective of ISL/WISL minimization. In
[6], the author formulated the ISL/WISL minimization-based
design in the frequency domain, wherein an alternative function
to approximate the objective for the original design was
used. Therein lie the developments of algorithms ‘CAN’ and
‘WeCAN’, which are generally considered as the benchmark
methods. More recently, the framework of majorization-
minimization (MM) [15] has been introduced for designing
waveforms with good ISL/WISL performance [16], [17]. The
relevant algorithm developments include ‘MM-Corr’, ’MM-
WeCorr’ [16], ‘ISLNew’, and ‘WISLNew’ [17], etc, and the
latter two have been reported to show advanced ISL/WISL
performance than the former two algorithms [17]. Other recent
studies about waveform design with good correlation properties
have been conducted using the alternative direction method
of multipliers (ADMM) [18], gradient descent in manifold
[19], etc., whose relevant works include [19]–[21] (see also the
references therein). Generally, the above algorithms only deal
with small/medium-scale code lengths of waveforms, and many
of them show slow convergence speed of waveform generation
which significantly limits their application in practice.

In this paper, we aim at designing the single unimodular
waveform that has good correlation property or low ISL values.
We propose an idea of designing the waveform via the direct
optimization on the phase values of its elements, which differs
from existing approaches commonly involving constraints on
the magnitude of the waveform. Using this idea, the standard
ISL-minimization-based waveform design is transformed as an
unconstrained optimization problem with respect to the phase
values of waveform. Therefore, the repetitive projection of
non-unimodular complex values into approximating constant
magnitudes of waveform in existing method can be avoided.
Specifically, we first convert the ISL metric into a new
objective function with respect to the phase values of waveform
elements. Then, we tackle the newly obtained unconstrained
ISL-minimization-based optimization problem via majorization-
minimization (MM) techniques [15]. The first-order gradient
of the new objective function is derived, whose majoriant is
therefore elaborated. Based on this, we finally resolve the
optimization problem through iterations, wherein we obtain
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a closed-form solution with fast implementations at each.
Corresponding algorithm is proposed, whose simpleness and
effectiveness are verified by simulations.

Notations: We use bold lowercase, bold uppercase and
italic letters to denote column vectors, matrices, and scalars,
respectively. Notations λmax {·}, (·)T, (·)H, ⊙, ∇, ∇2,
min{·}, max{·}, ⪯, O(·), IM ,Re{·} and Im{·} denote
the largest eigenvalue of a matrix, transpose, conjugate
transpose, Hadamard product, gradient, Hessian, minimum
value, maximum value, generalized inequality between matrices,
order of complexity, the M ×M identity matrix, real part, and
imaginary part, respectively. Moreover, operators D{·}, Fp{·},
Gp{·}, and T {·} denote forming a diagonal matrix whose
main diagonal entries are picked up from the input vector,
applying the (2P-1)-point fast Fourier transform (FFT), picking
up the first P elements to form a new vector, and constructing
a Hermitian Toeplitz matrix whose first column coincides with
the input vector, repectively. In addition, sin(·), cos(·), ej(·),
and | · | are element-wise functions of sine, cosine, exponential,
and modulus if the input takes a vector form.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider the design of a single waveform with unit-
modulus elements for a radar or communication system. We
assume the waveform has a code length P , whose elements
are stored into a vector denoted by y ≜ [y(1), . . . , y(P )]T.
Without loss of generality, the mth waveform element y takes
the form given by y(m) ≜ ejΦm , where Φm denotes the phase
value of the mth element ranging between −π and π arbitrarily.

The auto-correlations of the waveform vector y at all time
lags are denoted by r(p), p = −P + 1, . . . , P − 1, whose
definition is given by [3]

r(p)≜
P−1∑

k=p+1

y(k)y∗(k − p)=r∗(−p), ∀p ∈ {0, . . . , P − 1}.

(1)

Based on (1), the ISL of the waveform vector y that
characterizes the accumulated sidelobes can be expressed as

ζ ≜
P−1∑

p=1−P

p̸=0

|r(p)|2. (2)

For the single-waveform design that is of interest, a
generalized minimization on the ISL can be enforced to
synthesize the waveform with good correlation properties.
Toward this end, the ISL-minimization-based waveform design
can be formulated as

min
y

ζ

s.t. |y(p′)| = 1, p′ = 1, . . . , P (3)

where the constraints guarantee the unit-modulus property for
each element.

III. UNIMODULAR WAVEFORM DESIGN VIA DIRECT PHASE
OPTIMIZATIONS

Considering that the elements of any unimodular waveform
are complex and have constant magnitudes equal to 1, we
therefore only need to manipulate their phase values to seek the
lowest ISL for the waveform. Realizing this fact, we generate
the idea of reformulating the ISL ζ into a function with resepct
to waveform phases {Φm}Pm=1, which therefore leads to the
ISL-minimization based waveform design via direct phase
optimization to be presented in the following.

Let us introduce a vector composed of all the P phase values,
which is denoted as z ≜ [Φ1,Φ2, . . . ,ΦP ]

T ∈ RP×1. Then,
we can express y as

y = ejz = cos(z) + jsin(z) (4)

where the functions sin(·), cos(·), and ej(·) are calculated
element-wisely, and they maintain such operation style in the
following. Using (4), transforming the ISL ζ into frequency
domain with some manipulations, we have

ζ=
1

2P

2P∑
p=1

((
(ejz)Hapa

H
p e

jz
)2−2P ((ejz)Hapa

H
p e

jz)+P 2

)
(5)

where ap ≜ [1, ejωp , . . . , ej(P−1)ωp ]T with ωp = 2π
2P p, and

the equality can be verified to hold by the result of [17] (see
(10) therein). Substituting (4) into (3), the constant-modulus
constraints can always be guaranteed, which therefore can be
discarded. Hence, the optimization problem (3) can be rewritten
as

min
z

1

2P

2P∑
p=1

((
cos(z)+jsin(z))Hapa

H
p (cos(z)+jsin(z)

))2

(6)

which is an unconstrained optimization problem with respect
to z. In order to solve (6), we make use of the majorization-
minimization technique. Before proceeding with (6), we present
the following result about the majorization of a generalized
function that has been shown in [17] (see Lemma 1 therein).

Lemma 1. If a real-valued function f(x) with respect to a real
variable x is second-order differentiable, and there is a matrix
G satisfying the generalized inequality ∇2f(ξ) ⪯ G for all x,
then for each point x0, the following convex quadratic function

g(x) = f(x0) +∇f(x0)
T(x− x0) +

1

2
(x− x0)

TG(x− x0)

(7)

majorizes f(x) at x0.

To find a proper majorization function for the objective
of (3) (denoted hereafter as f(z)) via Lemma 1, the first-
order gradient ∇f(z) of f(z) and the matrix G that satisfies
∇2f(ξ) ⪯ G have to be both available. For this purpose, we
present the following two lemmas.
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Lemma 2. The first-order gradient of f(z) is given by

∇f(z) = 2

P
Im

{
(T {AH|Aejz|2}ejz)⊙ e−jz

}
. (8)

Proof: Expanding the objective function of (3), we have

f(z)=
1

2P

2P∑
p=1

(
(cos(z))Tapa

H
p cos(z)+(sin(z))Tapa

H
p sin(z)

− j(sin(z))Tapa
H
p cos(z) + j(cos(z))Tapa

H
p sin(z)

)2
(9)

whose gradient takes the form as follows

∇f(z)= 1

P

2P∑
p=1

(
cos(z)+j sin(z))Hapa

H
p (cos(z)+j sin(z)

)
×
(
− 2D{sin(z)}Re{apaHp }cos(z) + 2D{cos(z)}

× Re{apaHp }sin(z) +D{sin(z)}(ja∗paTp )sin(z)
−D{cos(z)}(japaHp )cos(z) +D{cos(z)}(ja∗paTp )
× cos(z)−D{sin(z)}(japaHp )sin(z)

)
. (10)

Using the facts that Im
{
apa

H
p

}
sin(z)− Re

{
apa

H
p

}
cos(z) =

Re
{
apa

H
p e

jz
}

and Re
{
apa

H
p

}
sin(z) + Im

{
apa

H
p

}
cos(z) =

Im
{
apa

H
p e

jz
}

, after some straightforward derivations, we can
further rewrite ∇f(z) as

∇f(z)= 2

P
Im

{( 2P∑
p=1

(ejz)Hapa
H
p e

jzapa
H
p e

jz

)
⊙e−jz

}
=

2

P
Im

{
(T {AH|Aejz|2}ejz)⊙ e−jz

}
(11)

where A ≜ [a1,a2, · · · ,a2P ]H, and the second equality
is obtained via the fact

∑2P
p=1(e

jz)Hapa
H
p e

jzapa
H
p =

T {AH|Aejz|2}. The proof is complete. ■

Lemma 3. The generalized inequality G ⪰ ∇2f(z) holds if
G is designed as G ≜ λIP where

λ = 8P 2 − 2

P
min

{
Re

{
(T {AH|Aejz|2}ejz)⊙e−jz

}}
.

(12)

Proof: Using the fact that j(a∗pa
T
p − apa

H
p ) = Im

{
apa

H
p

}
,

we can rewrite (10) into the form as follows

∇f(z) = 2

P

2P∑
p=1

|aHp ejz|2
(
D
{
sin(z)

}(
Im

{
apa

H
p

}
× sin(z)− Re

{
apa

H
p

}
cos(z)

)
+D

{
cos(z)

}
×
(
Re

{
apa

H
p

}
sin(z) + Im

{
apa

H
p

}
cos(z)

))
. (13)

Applying the definition of gradient to (10), we obtain ∇2f(z)
as follows

∇2f(x) =
2

P

2P∑
p=1

(
Im

{(
apa

H
p e

jz
)
⊙e−jz

}
Im

{(
apa

H
p e

jz
)

⊙ e−jz
}T

+ |aHp ejz|2Re
{
D{ejz}apaHp D{e−jz}

} )
− Re

{
D
{
T {AH|Aejz|2}ejz ⊙ e−jz

}}
(14)

where the result of (11) is used for deriving to the simplified

Algorithm 1 Single unimodular waveform design via direct
phase optimizations

1: Initialization: P , z(0) ← random phase values of waveform
elements

2: repeat
3: Calculate λ and z(k+1) via (12) and (19)
4: k=k+1
5: until convergence
6: Output: y = ejz

(k+1)

form above, and we omit to show the elementary derivations
due to the space limitation.

For the majorizations of the first and second summing
components of (14), we use the fact that the inequalities
λmax{

∑2P
p=1 qpq

H
p } ≤

∑2P
p=1 q

H
p qp ≤ 2P 3 hold if we

choose qp ≜ Im
{(
apa

H
p e

jz
)
⊙e−jz

}
and qp ≜ D

{
e−jz

}
ap

accordingly. As for the third summing component of (14)
which is diagonal with real elements, we employ the minimum
element of it to construct the majorization function. Hence, we
obtain the following generalized inequality, i.e.,

∇2f(x) ⪯
(
8P 2 − 2

P
min

{
Re

{
(T {AH|Aejz|2}ejz)

⊙ e−jz
}})

IP (15)

The proof is complete. ■
In terms of Lemmas 1, 2, and 3, the majorization function

for the optimization problem (6) can be written as

g(z, z(k)) =
λ

2
zTz+

( 2

P
Im

{
(T {AH|Aejz

(k)

|2}ejz
(k)

)

⊙ e−jz(k)}
− λz(k)

)T

z+ const (16)

Ignoring constant terms in (16), we can rewrite the optimization
problem (6) as

min
z

λ

2
zTz+

( 2

P
Im

{(
T {AH|Aejz

(k)

|2}ejz
(k))
⊙e−jz(k)}

− λz(k)
)T

z (17)

whose closed-form solution at the (k + 1)-th iteration is

z(k+1) = z(k)− 2

λP
Im

{
(T {AH|Aejz

(k)

|2}ejz
(k)

)⊙e−jz(k)
}
.

(18)

To reduce the computational complexity, we apply the FFT
to the calculation of (18). Using the fast implementation
that T

{
AH|Aejz

(k) |2
}
ejz

(k)

= 2PF−1
P {FP {ejz

(k)} ⊙
|FP {ejz

(k)}|2}, we can further rewrite (18) as

z(k+1) = z(k) − 4

λ
Im

{
GP {F−1

P {FP {ejz
(k)

}

⊙ |FP {ejz
(k)

}|2}} ⊙ e−jz(k)
}

(19)

whose computational complexity is O(PlogP ). The procedures
of the waveform design summarized in Algorithm 1.
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Fig. 1. Normalized ISL versus number of iterations

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
algorithm, and compare it with the algorithms ‘CAN’ of
[6], ‘MM-Corr’ of [16], and ‘ISLNew’ of [17]. Throughout
simulations, we generate random phase values to initialize the
unimodular waveform for iterations, and we use the same phase
initialization for each comparison. The acceleration scheme
SQUAREM [16] is used to speed up the compared algorithms
except CAN, and the fast implementation via FFT is applied
to algorithms if they allow. The stopping criterion is defined as
the absolute ISL difference between two neighboring iterations
normalized by the initial ISL, whose tolerance parameter is
set to be 10−9.

Example 1: Evaluation on Convergence Speed. We evaluate
the convergence speeds of the algorithms tested in terms of
ISL values versus the number of iterations. The code length
of waveform is chosen as P = 512, and the ISL value at each
iteration is normalized by the initial ISL. It can be seen from
Fig. 1 that our proposed algorithm shows the best convergence
speed compared to the other algorithms. The ISLNew algorithm
shows the second best convergence speed, while CAN obtains
the worst. Moreover, our proposed algorithm achieves the
lowest ISL value after convergence with the smallest number
of iterations, and the minimum ISL value after convergence
is approximately 0.32 dB, 0.52 dB, and 1.01 dB lower than
those obtained by ISLNew, MM-Corr, and CAN, respectively.

Example 2: Evaluation on Correlation Property. We evaluate
the normalized auto-correlation levels of waveforms generated
by the tested algorithms. All parameters are the same as used
in the previous example. It can be seen from Fig. 2 that our
proposed algorithm gives the best auto-correlation levels of
waveform compared to the other three algorithms. The highest
correlation level of the waveform generated by our proposed
algorithm is around 0.29 dB, 3.23 dB, and 2.25 dB lower than
those produced by ISLNew, MM-Corr, and CAN, respectively.
optimizes waveform with better auto-correlation property.

Example 3: Evaluation on ISL Versus Code Lengths. We
compare the ISL performance in terms of different aspects
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Fig. 2. Correlation level of the tested algorithm

including the minimum and average ISL values obtained
after convergence, the average time consumption, and the
average number of iterations. All the results are obtained
through 50 independent trials. Two sets of code lengths are
tested. One contains medium-scale code lengths given by
{27, 28, 29, 210, 211}, and the other contains large-scale code
length given by {213, 214, 215, 216, 217}. The corresponding
results are shown in Tables I and II, respectively.

It can be seen from Table I that our algorithm outperforms
all the other algorithms, which costs around 0.011 seconds
and 0.292 seconds for code lengths P = 27 and 211 (via 123
versus 645 iterations), respectively. For the tested code length
P = 210, our proposed algorithm costs around 1.37, 3.18, and
23.67 times less time consumption than those of MM-Corr,
ISLNew, and CAN, respectively. It always obtains the lowest
average and minimum ISL value compared with all the other
algorithms. For all the code lengths larger than P = 27, our
proposed algorithm costs the least number of iterations. The
algorithm MM-Corr behaves the second best in terms of the
number of iterations for the generation of a single waveform
with the medium-scale code lengths.

It can be seen from Table II that the advantage of the
proposed algorithm on average time consumption is significant,
reducing 53.05, 17.08, and 3.69 times consumption of time
compared to MM-Corr, CAN, and ISLNew for the code length
P = 215, respectively. Among the tested algorithms, only our
proposed algorithm and ISLNew are acceptable for optimizing
the waveform of code length P = 217, and they cost 67.963
seconds and 132.441 seconds (via 3262 versus 3680 iterations),
respectively. Our proposed algorithm behaves as the fastest
algorithm, which also enable the least number of iterations.
The ISLNew algorithm behaves as the second best, but it still
costs 1.95 to 3.69 times consumption of time more than ours.

V. CONCLUSION

In this paper, we have proposed a fast algorithm to design
the single unimodular waveform with good auto-correlation
property, wherein the ISL-minimization based design has been
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TABLE I
ISL PERFORMANCE OF THE ALGORITHMS TESTED VERSUS MEDIUM-SCALE CODE LENGTH

P = 27 P = 28 P = 29 P = 210 P = P = 211

Min.a Ave.b Iter.c Timed Min. Ave. Iter. Time Min. Ave. Iter. Time Min. Ave. Iter. Time Min. Ave. Iter. Time

CAN -13.71 -11.69 1450 0.240 -13.05 -12.07 2497 0.543 -13.20 -12.30 2603 0.958 -13.39 -12.54 3269 2.841 -13.03 -12.56 3501 7.257

MM-Corr -14.37 -12.47 124 0.013 -14.23 -12.89 187 0.036 -13.73 -13.09 292 0.082 -13.99 -13.42 483 0.165 -13.89 -13.50 730 0.416

ISLNew -15.15 -12.46 125 0.015 -13.99 -12.88 188 0.081 -13.73 -13.10 289 0.164 -13.87 -13.42 456 0.382 -13.75 -13.50 698 0.471

Proposed -15.15 -12.50 123 0.011 -14.32 -12.90 180 0.027 -13.92 -13.12 277 0.058 -14.00 -13.42 418 0.120 -14.00 -13.51 645 0.292

a Min.: Minimum normalized ISL value (in dB). b Ave.: Average normalized ISL value (in dB). c Iter.: Average number of iteration numbers. d Time: Average time consumption (in seconds).

TABLE II
ISL PERFORMANCE OF THE ALGORITHMS TESTED VERSUS LARGE-SCALE CODE LENGTH

P = 213 P = 214 P = 215 P = 216 P = P = 217

Min.a Ave.b Iter.c Timed Min. Ave. Iter. Time Min. Ave. Iter. Time Min. Ave. Iter. Time Min. Ave. Iter. Time

CAN -13.03 -12.78 7287 29.865 -13.00 -12.85 9547 68.817 -13.02 -12.89 14577 384.704 - - - - - - - -

MM-Corr -13.87 -13.66 4891 9.713 -13.85 -13.70 23314 83.844 -13.80 -13.70 118820 1194.476 - - - - - - - -

ISLNew -14.07 -13.67 1532 6.158 -13.88 -13.72 2052 15.682 -13.88 -13.75 2724 83.146 -13.87 -13.77 3420 103.249 -13.86 -13.75 3680 132.441

Proposed -14.04 -13.67 1524 2.330 -13.91 -13.72 2043 5.549 -13.88 -13.74 2663 22.515 -13.85 -13.75 2876 31.102 -13.84 -13.75 3262 67.963

a Min.: Minimum normalized ISL value (in dB). b Ave.: Average normalized ISL value (in dB). c Iter.: Average number of iteration numbers. d Time: Average time consumption (in seconds).

solved using the idea of directly optimizing the phase values
of waveform elements. In particular, we have reformulated the
design problem into an unconstrained optimization problem
with respect to the waveform phases, thereby avoiding the
repetitive projections of non-unimodular complex values into
the best approximations of constant magnitudes. Then, we
have elaborated the majorant of the newly obtained objective
function based on deriving its first-order gradient, which finally
leads to tackling the design via MM techniques with iterations.
A closed-form solution with fast implementations has been
obtained at each iteration. Simulation results have verified the
simpleness and effectiveness of our proposed algorithm for
both cases of medium- and large-scale code lengths.
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