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Abstract—Waveform design with considering discrete phase
constraint at the design stage tends to be pertinent in the
emerging radar designs, especially since the digital to analogue
converters are limited in the resolution. However, this constraint
confines the degree of freedom to be only the waveform phase,
which should be selected from a limited alphabet. In this
paper, we aim to approximate a desired beampattern closely by
designing the transmit waveform while considering the discrete
phase constraint at the design stage. To this end, we consider a
novel ℓp-norm metric to achieve quasi-equiripple beampattern,
which reduces the interference from the undesired directions.
This problem leads to a NP-hard and non-convex optimization
problem, where to efficiently solve it, we utilize the BSUM
algorithm which successively optimizes the objective function by
optimizing a certain upper bound of the original objective in a
coordinate wise manner. In the numerical results, we show the
performance of the proposed method and compare it with the
state-of-the art.

Index Terms—Waveform Design, MIMO Radar, Beampattern
Matching, Block Successive Upper Bound Minimization (BSUM)

I. INTRODUCTION

Transmit beampattern shaping controls the directionality
of the transmission on transmit antennas in Multiple-Input
Multiple-Output (MIMO) radar systems. Beampattern shap-
ing by providing a better Signal to Interference plus Noise
Ratio (SINR), improves the spectral-special efficiency, better
detection probability, target identification, etc. Furthermore, in
the coexistence approach with communications systems the
MIMO radar systems adjust its transmitter beampattern to
mitigate the interference for communication systems [1], [2].
In this regards, adaptive waveform design, plays important
role to shape the beampattern effectively. Generally, there are
two approaches for beampattern shaping via waveform design
are exist, the indirect (two-step) and direct methods [3]. In
indirect approach first, the waveform correlation matrix is
designed and then the original waveform matrix is obtained
through one of the decomposition methods [4], [5]. While
in direct method the waveform is designed directly [3], [6],
[7]. Besides, there are several metrics (objective functions)
to shape the beampattern, such as, beampattern matching,
spatial-Integrated Sidelobe Level Ratio (ISLR) minimization
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and SINR maximization. In beampattern matching the goal
is minimizing the difference of the beampattern response of
MIMO radar with the desired beampattern [3], [8]–[11]. In
Spatial-ISLR minimization approach, the aim is minimizing
the ratio of summation of beampattern response on unde-
sired over desired angles [12]–[14]. In SINR optimization
approaches, the problem does not deal with the beampattern
directly. However, kind of beampattern will be shaped as a
result of transmit waveform optimization [15]–[18].

In this paper, we consider the ℓp-norm beampattern match-
ing problem under discrete phase, i.e. M -ary Phase Shift
Keying (MPSK) constraint. Considering the ℓp-norm metric
for the beampattern matching problem was originally sug-
gested in [11], and it has been shown that it provides quasi-
equiripple beampattern comparing with the standard ℓ2-norm
metric. In [11], Peak-to-Average Ratio (PAR) and energy
constraints were considered as the optimization constraints in
the design stage. It is worth noting that in the aforementioned
schemes, high-resolution digital-to-analog converters (DACs)
are considered by default. However, it will cause massive
power consumption and huge hardware cost when employing
MIMO radars, especially for the 4D-imaging cases [14].
This motivates the use of low resolution DACs. Recently, in
[19], [20], the low-resolution DACs is utilized to beampattern
design. However, the aforementioned methods need several
time approximation which can lead some performance loss.
Different from the works in the literature, we directly solve the
problem of ℓp-norm based beampattern matching considering
the discrete phase (MPSK) constraint at the design stage. This
scheme results in a non-convex, possibly NP-hard problem.
Our approach is to design the waveform directly using BSUM
which offers a low complexity methodology to a complex
problem.

To this end, the paper is organized as follow. Section
II introduces the system model and describes the problem
formulation. Section III presents the proposed BSUM based
method whose performance is numerically assessed in section
IV. 1

1Notations: We adopt the notation of using lower case boldface for vectors
(a) and capital boldface for matrix (A). The transpose, conjugate transpose,
Frobenius norm absolute and Hadamard product operators are denoted by the
(.)T , (.)H , ∥ . ∥F , |.| and respectively. The letter j represents the imaginary
unit (i.e., j =

√
−1), while the letter (i) is use as step of a procedure.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Let X ∈ CM,N be the transmitted waveform in the base-
band of a MIMO radar system with M transmitters and
the sequence length of N . At time sample n, the waveform
transmitted through the M antennas is denoted by xn, where,

xn = [x1,n, x2,n, . . . , xM,n]
T ∈ CM . (1)

In (1), xm,n denotes the nth sample of the mth transmitter.
Let Uniform Linear Array (ULA) be the configuration of
the transmitter, where the distance between the elements
are dt = λ

2 and λ is the wavelength. Thus, the steering
vector at angle θ (θ ∈ [0, 2π)) can be written as [21],
a(θ) = [1, ejπ sin(θ), . . . , ejπ(M−1) sin(θ)]T ∈ CM . In this case
the transmit beampattern is given by [4],

r(X, θ) =

N∑
n=1

∣∣∣aH(θ)xn

∣∣∣2 =

N∑
n=1

xH
n A(θ)xn, (2)

where, A(θ) ≜ a(θ)aH(θ).
Let qk be the desired beampattern, where k ∈ {1, . . . ,K}

and K denotes the number of discrete angles. Using the
beampattern matching under discrete phase constraint leads
us to solve the following optimization problem [11],

min
X,µ

f(X, µ) ≜
K∑

k=1

|r(X, θk)− µqk|p

s.t. xm,n = ejϕ, ϕ ∈ ΦL,

(3)

where, p ≥ 2, µ is a scaling factor [3], and ΦL indicates
the discrete phase alphabet. Precisely, ΦL indicates the MPSK
alphabet, e.g. ΦL =

{
0, 2πL , . . . ,

2π(L−1)
L

}
.

As can be seen the (3) is a multi-variable, non-convex and
NP-hard optimization problem. In the following, we propose
an algorithm based on BSUM to deal with (3).

III. PROPOSED METHOD

The BSUM algorithm generalizes the Block Coordinate
Descent (BCD) methods and includes procedure that succes-
sively optimize particular upper-bounds or local approximation
functions of the original objectives in a block by block manner
[22], [23]. One possible choice for the approximation function
is Majorization-Minimization (MM) function. This choice is
one of the condition which guarantees the convergence of the
argument in optimization problem [24], [25]. In this paper, we
use the following lemma to obtain the majorizer function.

Lemma III.1. Let |x| ∈ [0, τ ], for p ≥ 2, |x|p can
be majorized by η|x|2 + ψℜ

{
x x(i)

|x(i)|

}
+ ν, where, ψ ≜

p|x(i)|(p−1) − 2η|x(i)|, η ≜ τp+(p−1)|x(i)|p−pτ |x(i)|(p−1)

(τ−|x(i)|)2 , ν ≜

η|x(i)|2 − (p− 1)|x(i)|p.

Proof. see [26].

Substituting |r(X, θk)−µqk| in lemma III.1 and considering
r(X, θk)−µqk is a real function, it can be shown that f(X, µ)
can be majorized by the following,

u(X, µ) =

K∑
k=1

ηk(r(X, θk)− µqk)
2

+

K∑
k=1

ψk(r(X, θk)− µqk) +

K∑
k=1

νk.

(4)

Defining g(i)k ≜ r(X(i), θk)− µ(i)qk we have,

ηk ≜
τp − |g(i)k |p − p|g(i)k |p−1(τ − |g(i)k |)

(τ − |g(i)k |)2

ψk ≜ (p|g(i)k |p−2 − 2ηk)g
(i)
k , νk ≜ ηk|g(i)k |2 − (p− 1)|g(i)k |p

(5)
According to III.1, in each iteration, τ should be chosen

such that it is a upper bound of |gk|p. Therefore, one possible
choice is τ =

∥∥∥g(i)k

∥∥∥
p

[26].

The problem (4) depends on X and µ. One possible solu-
tion to tackle this problem is using alternating optimization
technique [27]. Based on this technique, first we optimize the
problem with respect to µ, then in the next step we optimize
it with respect to X.

A. Scaling factor optimization

The majorization function (4) has a quadratic form with
respect to µ. In this case the problem is convex and the
optimum value of µ can be obtain by finding the roots of
the derivative of the objective function. It can be shown that
the optimum value for µ is given by,

µ⋆ =

∑K
k=1 2qkηkr(X

(i), θk) + qkψk

2
∑K

k=1 ηkq
2
k

(6)

B. Waveform Optimization

The BSUM procedure consists of three steps as follows,
1) Select a block. 2) Find a local approximation function
that locally approximates the objective function. 3) At every
iteration (i), a single block, is optimized by minimizing a
approximation function of the selected block. In the smallest
case each entry of matrix X can be considered as a block. In
particular at ith iteration, one entry of X(i) is considered as
the only variable while others are held fixed and with respect
to this identified variable, the objective function is optimized.
Such a methodology is efficient when the objective function
can be written in a simplified form with respect to that variable.
Let us assume that x(i)t,d = ejϕ

(i)
t,d is the only variable. Therefore

the optimization problem with respect to ϕ
(i)
t,d can be written

equivalently as [12],
min
ϕ
(i)
t,d

u(µ⋆, ϕ
(i)
t,d) =

2∑
n=−2

c(i)n ejnϕ
(i)
t,d

s.t. ϕ
(i)
t,d ∈ ΦL,

(7)

where the coefficients cn are given in the Appendix.
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Since in discrete phase the phases are chosen from limited
alphabet of length L, the objective function can be written
with respect to the indices of ΦL as,

u(µ⋆, l) = ej
4πl
L

2∑
n=−2

cne
j
2π(n−2)l

L (8)

where l ∈ {0, . . . , L − 1}. As can be seen, the summation
part of (8) is the definition of L-points Discrete Fourier
Transform (DFT) of sequence [c2, . . . , c−2]

T . Therefore (8)
can be written equivalently as,

u(µ⋆, l) = h⊙FL{c2, c1, c0, c−1, c−2}, (9)

where, h = [1, ej
4π
L , . . . , ej

4π(L−1)
L ]T ∈ CL and FL is

L−point DFT operator. The current function is only valid for
L ⩾ 5. According to periodic property of DFT, u(µ⋆, l) can
be written as,

L = 4 ⇒ u(µ⋆, l) = hL ⊙FL{c2 + c−2, c1, c0, c−1},
L = 3 ⇒ u(µ⋆, l) = hL ⊙FL{c2 + c−1, c1 + c−2, c0},
L = 2 ⇒ u(µ⋆, l) = hL ⊙FL{c2 + c0 + c−2, c1 + c−1}.

Therefore the optimum solution for discrete phase is, l⋆ =
arg min

l=1,...,L

{
u(µ⋆, l)

}
. Subsequently, the optimum phase is,

ϕ⋆d = 2π(l⋆−1)
L .

1) Proposed Algorithm: The proposed method is summa-
rized in Algorithm 1. The inputs of this algorithm comprise
X(0) which is a set of random and feasible waveform, and the
desired beampattern qk. In the initialization step the optimiza-
tion parameters will be initialized with proper values. Then in
the first step we obtain the optimum value of µ, subsequently,
the variable xt,d will be updated by ejϕ

⋆
d . This procedure will

be continued until the stationary point is obtained. We consider
to terminate the algorithm procedure when the argument of the
objective convergence to the optimum value, e.g., we consider
∆X(i) ≜

∥∥∥X(i) −X(i−1)
∥∥∥
F
≤ ζ as the stopping criterion.

IV. NUMERICAL RESULTS

In this section, we provide some representative numerical
examples to illustrate the effectiveness of proposed method.
We consider the following assumptions. For system parameters
we consider ULA configuration with M = 16 transmitters
with N = 128 pulses. For purpose of simulation, we consider
an uniform sampling of the regions θ = [−90o, 90o] with
a grid size of 5o. For the Algorithm 1, we consider a
random MPSK sequences as initial waveform and the stopping
condition of algorithm 1 is set at ζ = 10−3.

A. Convergence Behavior

Fig. 1 shows the convergence behavior of the proposed
algorithm in two aspects, namely the objective function and
the argument. For these figures, we assume that the desired
angles are located at [−15o, 15o] and the algorithm 1 is
initialized with random MPSK sequence with alphabet size of
L = 4. Fig. 1a shows the convergence behavior of the objective
function with different alphabet sizes. As can be seen, in

Algorithm 1 : Waveform Design

Input: X(0), qk
Output: Optimized waveform, X⋆

1) Initialization
• Set i := 0, t, d := 1 and µ := 1;

2) Optimizing the scaling factor
• calculate the coefficients by (11)
• Obtain the optimum µ by (6);

3) Optimizing the waveform
• Calculate u(µ⋆, l), using (9);
• Find the Optimum phase, using ϕ⋆d = 2π(l⋆−1)

L ;
• X(i) = X(i−1)|

xt,d=ejϕ
⋆
d

;
• If t =M then t := 1; otherwise t := t+ 1;
• If d = N go to 4); otherwise d := d+ 1 and go to

2);
4) Stopping criterion

• If ∆X(i) =
∥∥∥X(i) −X(i−1)

∥∥∥
F

≤ ζ , go to 5);
otherwise d := 1 and go to 2);

5) Output
• Set X⋆ = X(i)

all cases the objective function decreases monotonically. By
increasing the alphabet size of the waveform the feasible set of
the problem increases, therefore the performance of the pro-
posed method becomes better. Fig. 1b shows the convergence
behavior of the argument of the problem. Observe that in all
cases the argument converges to the optimum value.

B. The impact of alphabet size

Here we investigate the impact of alphabet size of the
waveform on beampattern response. Fig. 2 shows the beampat-
tern response of the proposed method with different alphabet
sizes. In this figure, we consider similar simulation setup with
Fig. 1. Observe that, increasing the alphabet size cause better
beampattern response in terms of the side-lobes. This behavior
was expected, because by increasing the alphabet size the
feasible set will increase as well.

C. Beampattern Analysis

In this subsection we evaluate the performance of the
proposed method in terms of beampattern response. Fig. 3
compares the beampattern response of the proposed method
with UNImodular set of seQUEnce design (UNIQUE)-C4 [12]
and the Alternating Direction Method of Multipliers (ADMM)
[3] methods. The UNIQUE-C4 method proposed a Coordinate
Descent (CD)-based method to solve the spatial-ISLR problem
under discrete phase, while the authors in [3] solved the
beampattern matching problem based on ADMM method
under continuous phase constraint. Observe that UNIQUE
offers the lowest sidelobes in both terms of spatial-ISLR and
-Peak Sidelobe Level Ratio (PSLR) among the methods. How-
ever, the beampattern response on the mainlobe is imperfect.
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Fig. 1: Convergence behavior of the proposed method with different alphabet size (M = 16, N = 128, p = 3 and qk ∈
[−15o, 15o])
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Fig. 2: The impact of alphabet size on the beampattern
response of the proposed method (M = 16, N = 128, p = 3
and qk ∈ [−15o, 15o]).
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Fig. 3: Comparing the beampattern response of the proposed
method with UNIQUE-C4 and ADMM (M = 16, N = 32
p = 64, L = 16 and qk ∈ [−10o, 10o]).

The ADMM-based and proposed methods with ℓ2- and ℓp-
norm matching have the same mainlobe beampattern response.
However, the advantage of the proposed method is designing
a discrete phase waveform with finite alphabet size which is
more attractive for radar engineers, due to the simplicity.

D. Computational Complexity

Fig. 4 compares the convergence time of the proposed with
UNIQUE-C4 and ADMM, with different sequence length. As
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Fig. 4: Comparing the convergence time of the proposed
method with UNIQUE-C4 and ADMM, with different se-
quence length (M = 16, p = 64, L = 16 and qk ∈
[−10o, 10o]).

can be seen, the ADMM has the highest convergence time
which indicates the the high computational complexity of
it. The UNIQUE-C4 method offers the lowest convergence
time which shows the efficiency of the algorithm. However,
convergence time of the ℓ2-norm and ℓp-norm beampattern
matching approach is some how between the two afore-
mentioned methods. Since in the proposed method we do
not directly deal with the original problem, this behavior is
expected. Furthermore, from Fig. 4 it can be concluded that,
approximately the UNIQUE-C4 is 100 times faster than the ℓ2-
norm and ℓp-norm approaches. In similar way the ℓ2-norm and
ℓp-norm approach is 100 times faster than ADMM method.

V. CONCLUSION

In this paper, we devised an efficient algorithm for designing
MIMO radar waveform by ℓp-norm beampattern matching
technique. We proposed a BSUM-based method to solve the
multi-variable, non-convex and NP-hard problem. Through the
numerical results we have shown that the proposed algorithm
decreases the objective function monotonically. Besides we
show the performance of the proposed method in terms of
beampattern response and we have compared it with the state
of the art. We show that, the proposed method designs a beam-
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pattern with good mainlobe response with good convergence
time.

APPENDIX

The function r(X, θk) can be written with respect to xt,d
as r(X, θk) = b1,ke

jϕt,d + b0,k + b−1,ke
−jϕt,d [12], where,

b1,k ≜
M∑

m=1
m̸=t

x∗m,dakm,t , b−1,k ≜ b∗1,k,

b0,k ≜ akt,t
+

N∑
n=1
n ̸=d

xH
n A(θk)xn +

M∑
m=1
m̸=t

M∑
l=1
l ̸=t

x∗m,dakm,l
xl,d,

(10)
and akm,l

is the (m, l)th entry of matrix A(θk). By substi-
tuting (10) in (4) and some mathematics manipulation the
objective function in (7) can be obtained, as,

c2 ≜
K∑

k=1

ηkb1,k, c1 ≜
K∑

k=1

2ηkb1,k(b0,k − µqk) + ψkb1,k,

c0 ≜
K∑

k=1

2ηk(|b1,k|2 + (b0,k − µqk)
2) + ψk(b0,k − µqk) + νk,

c−1 ≜ c∗1, c−2 ≜ c∗2.
(11)
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