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A LIS of A antenna elements is placed at the room’s ceiling.

We assume an ideal LIS made up of isotropic antennas. There-

fore, physical effects such as mutual coupling are neglected.

The sensing task is to create a radio map that captures a person

in the environment by superimposing the received signals from

each of the d ∈ Da elements at each of the A LIS components.

The superposed complex baseband signal received at the LIS

is given by

y =

Da∑
d=1

hdxd + n. (1)

Here, xd is the transmitted symbol from device d (without

loss of generality, we consider xd = 1), hd ∈ C
N×1 is the

channel vector from a specific position of device d to each

antenna-element, and n ∼ CNN (0, σ2IN ) is the noise vector.

For simplicity, we consider narowband transmissions and this

removes the effect of frequency selectivity.

The large physical dimensions of the LIS, compared with

the distance from the transmitters to the ceiling, lead to

a spherical-wave propagation condition. The spherical-wave

channel coefficient hsp,a at the a-th element from an arbitrary

active device transmission is proportional to [12]

hsp,a ∝ 1

da
e−j 2π

λ da , (2)

where da denotes the distance between the active device and

the a-th antenna. To compute the radio map, we can derive a

Matched Filter (MF) such that [11]

ymf = hsp ∗ y. (3)

In eq 3, ∗ denotes the convolution operator, hsp ∈ C
Nf×1 is

the expected spherical pattern (steering vector) for Nf filter-

antennas LIS deployment on (2), y is the received signal

from (1) and ymf ∈ C
A×1 is the filtered output that rep-

resents the radio map. We zero-pad y such that we guarantee

ymf ∈ C
A×1 dimension to perform the convolution. To obtain

the radio map, we compute the energy at the output of the

MF. In this way, we are measuring the energy of the signals

reflected from the target. In order to design the filter, we

assume knowledge of the frequency f and the distance d (the

z coordinate, since the LIS is deployed at the ceiling) between

the transmitter and the LIS1. Figure 2 shows the detection of

the target on the LIS processed radio map.

1) Simulated scenario: We perform simulations via ray

tracing [13] in a 4.7× 4.7× 3.2 m simulated area. We deploy

a LIS with 118 × 118 elements separated by λ/2. The Da

active devices transmit narrowband signals of 20 dBm at 3.5

GHz and they are randomly deployed in the space (x, y, z).
The distance from which the MF is calibrated is d = 3.2, as

we set a kernel for the procedure such that it scans the entire

height of the room. The human is modeled as a rectangle

of dimensions 0.3x0.5x1.83 m (reasonable human dimensions

obtained from [14]) with conductivity s = 1.44 S/m, relative

1A detailed explanation of the radio maps is given in [11]. The distance d
is a parameter for the filter design and may differ from the actual distance to
the transmitter in the evaluation.

Fig. 2: A radio map obtained for an M = 118× 118 antenna

elements λ
2 spaced LIS in a noiseless scenario with Da = 5

active devices by using a MF design for f = 3.5 GHz, d = 3.2
m and Nf = 100× 100 antenna elements λ

2 spaced.

permittivity ε = 38.1 and relative permeability μ = 1 [15].

To be fair with the experimental setup, the positions of the

passive human (x, y, z = 1.83) m are randomly selected in a

circle of radius 2.5 m.

2) Received signal and noise modeling: From the ray-

tracing simulation, the received signal in (1) is obtained as

the complex electric field arriving at the n-th antenna element,

Ẽa, which can be regarded as the superposition of each ray

path r ∈ Nr from every d ∈ Da device, i.e.,

Ẽa =

Da∑
d=1

Nr∑
r=1

Ẽa,r,d =

Da∑
d=1

Nr∑
r=1

Ea,r,de
jφa,r,d . (4)

The complex signal at the output of the n-th element is

therefore given by

ya =

√
λ2Za

4πZ0
Ẽa + na. (5)

Here, λ is the wavelength, Z0 = 120π os the free space

impedance and Zn is the antenna impedance. For simplicity,

we consider Zn = 1∀n. Finally, we define the average Signal-

to-Noise Ratio (SNR), γ, as

γ � λ2

4πZ0Mσ2

A∑
a=1

|Ẽa|2, (6)

where A denotes the number of antenna elements in the LIS.

B. Radar System Model

We utilize the IWR1443 mmWave FMCW radar operating

at 77GHz with 4GHz bandwidth. We further process the point

cloud data generated by the radar to perform localization.
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the bounding box. The loss function is Mean Squared Error

(MSE).

C. Main Assumptions

The main assumptions for both approaches are as follows.

With respect to LIS, we assume that mutual coupling is

ignored. It is commonly represented using a coupling matrix

that takes into account the influence of nearby antennas [18]

but the influence can be compensated after estimation, and

hence does not affect any conclusion drawn. Radar and LIS

have a Line-of-Sight (LOS) to the target. Also, to design the

filter we need to assume a-priori the frequency f and the

distance from a transmitter to the LIS d. However, this last

parameter is not a very strong assumption (cf. Section II-A1).

We therefore set it to be the distance as if the transmitter were

on the floor. This means that the transmitters can be at different

distances and are not limited by the filter design.

The field of view of the radar is -55◦ to +55◦.

III. IMPLEMENTATION AND EVALUATION

In this section, we explain the way we collected data

in the real-world environment for the mmWave radar and

simulation environment for LIS. Then, we elaborate on the

model training process, evaluation metrics, and finally the

localization performance comparison between the radar and

the LIS.

A. Dataset

To collect the radar data (cf. Fig. 4a), we marked a circular

area with 2.5m radius on the floor and asked participants to

walk arbitrarily inside the circle. A IWR1443 radar and a

GoPro camera were mounted in 3m height over the center

of the circle record ground truth point cloud and video data

(Fig. 4b). We labelled the video using the Ground Truth

Labeler application. The radar data was labeled manually by

matching the bounding boxes from the video with the point

cloud data. Three subjects participated in the experiment and

15,000 samples have been collected. Training, validation and

testing is performed following a 60/10/30 split.

For the LIS, we simulated the same circular area with

2.5m radius and simulated random positions of the target. The

positions are processed by obtaining radio maps using Da = 5
active devices randomly deployed in the room. 15,000 samples

were recorded.

B. Radar Model Training Process

We used a computer with 32GB of RAM and an Nvidia

GeForce 940MX GPU for training and inference. The model

for the radar pipeline is implemented based on PyTorch

and PyTorch Geometric [19] frameworks. An early stopping

scheme with a patience of 100 epochs is exploited to prevent

from over-fitting. In other words, if no improvement is ob-

served on the validation set within the patience period, we

stop the training process and save the best model.

Bounding Box
from Ground
Truth Labeler

2.5
m

(a)

Radar

GoPro
Camera

(b)

Fig. 4: (a) The experiment environment which is a circle with

2.5m radius marked on the ground. (b) An IWR1443 radar

and a GoPro camera installed on the ceiling with 3m height.

MSE is used as the loss function to train the model, Adam

Optimizer [20] with step-decay strategy to train the network:

Lr = Li · d�
e
er

�
r . (8)

Here, Lr is the learning, Li is the initial value of the learning

rate, dr is the drop rate after every er epochs, e is the current

epoch and �·� is the floor operator. In our experiments Li, dr,

and er are 0.001, 0.5, and 20, respectively.

C. LIS Radio Map Based Localization

We process the radio map by obtaining the indices of the

maximum peak value to infer the human position, i.e.

(xc, yc) = arg max
xp,yp

|ymf | ×Δs, (9)

In this equation, xc and yc denote the inferred position, xp

and yp the position in the pixel domain and Δs the antenna

spacing.

D. LIS Bounding Box Creation

As we are not using a learning algorithm, but want to

compare LIS and radar systems, we compute manually a

bounding box considering the center the inferred positions.

As we know the dimensions of our target (detailed in

Section II-A1) we can compute a bounding box from the center

position such that

(xmin, ymin) = (xc − L

2
, yc − W

2
), (10)

(xmax, ymax) = (xc +
L

2
, yc +

W

2
), (11)

with L = 0.5 m and W = 0.3 m (cf. Section II-A1).

E. Evaluation Metric

To evaluate the performance of the models we use Intersec-

tion Over Union (IOU) and the Euclidean distance between

the center of the ground truth bounding box and the predicted

bounding box. The IOU is defined by:
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Fig. 5: Average IOU and distance error for radar and LIS

IOUi =
|Pi ∩Gi|
|Pi ∪Gi| , (12)

where Pi and Gi are predicted and ground truth bounding

boxes for sample i. We report the average IOU and Euclidean

distance between the centers of the ground truth and the

predicted bounding boxes on the test set for each of the

approaches.

F. Localization Comparison

As shown in Fig. 5, the average IOU for the LIS in local-

ization is 0.56 while the Radar it is 0.71. This result suggests

that the radar is more accurate in estimating the bounding

box for the target. We have a similar result for the average

distance error of the bounding boxes. The radar outperforms

the LIS with only 3cm in contrast to 10cm average error. These

results suggest that mmWave radars are more accurate than

LIS, but in scenarios where the accuracy of sensing can be

compromised, LIS can provide simultaneous communication

and sensing capabilities without a need for a third-party

device. Also, there might be potential scenarios in which

LIS would outperform the radar. For example, decreasing the

inter-antenna spacing would lead to more accurate localization

results for the LIS. However, we showed the common inter-

antenna distance design (λ2 ) to provide a close comparison to

the radar.

IV. CONCLUSION

So far, mmWave radars have been considered the standard

de facto for indoor localization given their incredibly cheap

components and localization accuracy. However, the break-

throughs in communications systems are leading to devices

that can integrate both sensing and communications. LISs arise

as a brand-new device which communications capabilities are

expected to go beyond massive MIMO. However, their sensing

functionality is still under investigation. In this paper, we

have shown a comparison among LIS and mmWave radars in

an indoor sensing-based localization task. Results show that

LIS is not that different from mmWave radars in localization

accuracy, with the advantage of leading to a new system

that can integrate both sensing and communications. In most

scenarios there is no need to have a very accurate localization,

including but not limited to industrial localization systems or

localizing users for beamforming. In those scenarios, LIS can

also act as a sensing device providing communications and

sensing capabilities at the same time.
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