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Abstract—In this paper, we present a training-less methodology
for Phaseless Passive Synthetic Aperture Radar imaging. The
existing approach based on Wirtinger Flow (WF) requires large
number of phaseless measurements for satisfactory reconstruc-
tion. To address this issue, we propose a regularized Wirtinger
Flow based approach that helps with efficient image recon-
struction. We employ Total Variation, BM3D and Deep Image
Prior based regularizers/denoisers in an ADMM framework for
the proposed solution. The results indicate that compared to
the state-of-the-art, the proposed approach not only facilitates
better reconstruction with lesser measurements but also shows
robustness against SAR trajectory errors.

Index Terms—Passive SAR, Wirtinger Flow, phase retrieval,
regularization, ADMM, Denoiser.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) imaging is an all weather
friendly imaging paradigm that has numerous applications
[1]– [3]. Among several SAR imaging modalities, the passive
SAR imaging modality which uses signals of opportunity is
gaining lot of attention these days. The key advantages of
employing such passive SAR systems are reduction in cost,
moderate hardware requirement and less burden on already
crowded electromagnetic spectrum [4]. Classically, passive
SAR is achieved by using interferometric technique with
multiple receivers [5], [6]. However, these multiple receivers
must be properly synchronized to avoid imaging errors. To
overcome this issue of synchronization, lately a new passive
SAR imaging paradigm referred to as Phaseless Passive SAR
(PPSAR) imaging is becoming popular, as it uses only a single
receiver. In this paper, we consider this emerging PPSAR
imaging paradigm and propose a training-less method for
improved imaging.

While PPSAR is an attractive paradigm, standard SAR
reconstruction algorithms are not directly applicable due to the
phaseless measurements. Till date, limited literature exists on
PPSAR image reconstruction [7], [8], [9]. A Low Rank Matrix
Recovery (LRMR) based approach using lifting was proposed
in [7]. The major drawback of this approach is that the lifting
operation increases the dimension of the unknown image
space, making it computationally demanding and memory
intensive. These limitations make LRMR to scale poorly and
restrict the dimension of the image that can be reconstructed.
The use Wirtinger Flow [10] as the recovery algorithm was
proposed in [8]. Unlike LRMR approach, Wirtinger Flow does
not alter the dimension of the problem and uses gradient

descent for optimization. Throughout this paper, we will refer
the approach in [8] as the vanilla Wirtinger Flow (vWF). The
vWF provides better reconstruction with reduced computa-
tional complexity compared to LRMR approach [8]. However,
it requires large number of measurements for satisfactory
reconstruction. In SAR systems, this leads to provisioning
of more on-board storage and/or a high speed data link
between the mobile platform and the ground station. These
requirements are undesirable in practice as SAR systems are
deployed on resource constrained platforms.

A possible way to overcome the aforementioned problem
is to have better algorithms that use suitable regularizers
which facilitate reconstruction with fewer measurements. More
recently, a Wirtinger Flow based approach imposing regu-
larization with Generative Prior (GP) was proposed in [9].
However, the improvement in performance is at the expense
of the training data requirements.

On the contrary, in this paper we address the PPSAR image
reconstruction with the Wirtinger Flow based approach in a
training-less setting, that is, we do not train any network
that learns to recover the unknown SAR image. Towards this
goal, our contributions are as follows. Firstly, we propose
a regularized Wirtinger Flow (rWF) based formulation that
uses suitable regularizers to facilitate image reconstruction
with fewer measurements. Secondly, while one can use a
solution similar to [11], here we use the Alternating Direction
Method of Multipliers (ADMM) [12] as it has been shown to
be highly efficient for non-convex problems [13], [14]. The
ADMM approach helps in application of various denoisers
in a Plug-and-play (PnP) manner [15]. Thirdly, we employ
standard denoisers such as Total Variation [16] and BM3D
[17]. Further, we also apply the Deep Image Prior [18] for
denoising where early stopping works as regularization. We
demonstrate the effectiveness of the aforementioned denoisers
for the PPSAR problem. In general, the results demonstrate the
superior performance of the proposed rWF approach in giving
good reconstruction. In particular, rWF with Total Variation
provides 75% reduction in measurements compared to the
state-of-the-art [8]. In addition, rWF is also more robust to
SAR trajectory errors when compared with vWF.

The rest of the paper is organized as follows. Section
II provides a brief description of the PPSAR signal model.
Subsequently, Section III describes the proposed approach in
detail. The performance comparison of the proposed approach
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with that of vWF is provided in Section IV. Finally, Section
V concludes the paper.

II. PHASELESS PASSIVE SAR SIGNAL MODEL

In this paper, we use an identical PPSAR signal model as
that of [8] and also provide a brief description for the sake of
continuity. We assume a single mobile receiver moving over
the scene of interest whose trajectory is given by γ(s) ∈ R3,
‘s’ represents the slow-time index, which is sampled at suitable
measurement intervals. Let X = (x, ψ(x)) ∈ R3 denote
the earth’s surface with x = (x1, x2) and ψ(x) is the
ground topography which is assumed to be known. The ground
reflectivity at any ground location x is denoted by ρ(x) and
y represents the location of the fixed transmitter.

Under the start-stop and Born scattering approximations,
the fast-time Fourier transform of the received signal can be
expressed as [5]:

f(ω, s) =

∫
e−iωϕ(s,x,y)/cA(ω, s,x)ρ(x)dx, (1)

where ϕ(s,x,y) = |y−x|+|x−γ(s)|, A(ω, s,x) (see [8, eq.
3]) is the amplitude function which depends upon the transmit
and receive antenna beam pattern, and for the spotlight SAR
configuration A(ω, s,x) ≈ 1 and ω is the frequency index.
Upon autocorrelation of the fast-time samples and using the
autocorrelation property in the frequency domain, the mea-
surements are given as:

d(ω, s) = f(ω, s)∗f(ω, s) = |f(ω, s)|2, (2)

where (.)∗ denotes the complex conjugate. Please note that due
to |.|2, the measurements become phaseless. By substituting
(1) into (2), d(ω, s) can be expressed as:

d(ω, s) =

∫ ∫
ρ(x)ρ(x̃)e−iωξ(s,x,x̃,y)/cdxdx̃, (3)

where ξ(s,x, x̃,y) = |y−x|+|x−γ(s)|−|y−x̃|−|x̃−γ(s)|.
With far-field and small scene assumptions, |y−x|−|y−x̃| ≈
ŷ · (x̃−x) (see [19, Appendix A]), where ŷ is the unit vector
of y. Using the above approximations, the integrals in (3) can
be separated and given as:

d(ω, s) =

∫
ρ(x)e−iω(|x−γ(s)|−ŷ·x)/cdx

×
∫
ρ(x̃)eiω(|x̃−γ(s)|−ŷ·x̃)/cdx̃. (4)

Thus, one can observe that d(ω, s) depends only on the unit
vector ŷ and not on the transmitter location y. By discretizing
the imaging scene into N small cells and discretizing (ω, s)
with the appropriate sampling frequency and measurement
intervals, the mth sampled measurement dm corresponding
to (ω, s)m, m = 1, 2, ...,M can now be expressed as:

dm = |LH
mρ|2 = LH

mρρHLm (5)

where ρ ∈ RN and the nth element of ρ, i.e., ρn = ρ(xn)
and Lm ∈ CN , whose nth element is given as:

[Lm]n = e−iω(|xn−γ(s)|−ŷ·xn)/c|(ω,s)m . (6)

Given xn and (ω, s)m, Lm can be computed and thus, our task
is now to estimate reflectivities ρ knowing the measurements
dm. As mentioned in Section I, one can either use the LRMR
or vWF approach.

However, as shown in [8], vWF provides better performance
compared to the LRMR approach without increasing the
dimension but in general, requires more measurements for sat-
isfactory reconstruction. In the following section, we describe
the rWF based method which achieves good reconstruction
with comparatively fewer number of measurements.

III. REGULARIZED WIRTINGER FLOW FOR PPSAR

We propose the following optimization problem to recover
ρ from the measurements dm

ρ̂ = argmin
ρ
D(ρ) + λR(ρ). (7)

where D(ρ) is a data-fidelity term, R(ρ) represents the
regularization term and the hyper-parameter λ controls the
amount of regularization. For the data-fidelity term D(ρ),
similar to [8], [10], we consider the simple quadratic loss
function which is given as:

D(ρ) = 1

2M

M∑
m=1

∥∥LH
mρρHLm − dm

∥∥2
2

(vWF). (8)

The authors in [8] estimate ρ by minimizing only the above
data-fidelity term without any regularization factorR(ρ). They
solve it by using the gradient descent algorithm with Wirtinger
derivatives as described in [10].

We solve (7) by using the variable splitting approach [20]
for which we introduce proxy variable v and convert (7) into
the following constrained optimization problem

{ρ̂, v̂} = argmin
ρ,v

D (ρ) + λR(v) subject to ρ = v. (9)

The Augmented Lagrangian corresponding to (9) can be
expressed as [21], [22]:

L (ρ,v,u) = D (ρ)+λR(v)+uT (ρ−v)+ µ

2
∥ρ−v∥22, (10)

where µ is the penalty parameter and u represents the La-
grangian parameter. The minimizer of (9) is the saddle point
of L (ρ,v,u) which can be found by solving (10) using the
ADMM iterations that are given as [12], [23]:

ρ(k+1) = argmin
ρ
D(ρ) + µ

2
∥ρ− ρ̃(k)∥22 (11)

v(k+1) = argmin
v

2λ

µ
R(v) + ∥v − ṽ(k)∥22 (12)

ū(k+1) = ū(k) + (ρ(k+1) − v(k+1)) (13)

where ū(k) = 1
µu

(k), ρ̃(k) = v(k)− ū(k) and ṽ(k) = ρ(k+1)+

ū(k).
We solve the sub-problem (11) based on the Wirtinger

derivatives. The initial estimate for the WF is important for its
convergence and we choose the initial estimate ρ0 using the
spectral method as described in [10]. The leading eigenvector
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Algorithm 1 Algorithm for PPSAR

Require: {dm}Mm=1, {Lm}Mm=1, WF iter, Total iter, λ, µ,
ϵ1, ϵ2.
ρ0 ← using Spectral Method
ρ(0) ← ρ0,v

(0) ∼ N (0, 1),u(0) ← ρ(0) − v(0)

k ← 0, j ← 0

while ∥u(k+1)−u(k)∥
∥u(k)∥ ≤ ϵ1 and k < Total iter do

ρ̃(k) ← v(k) − u(k)

ρ(0) ← ρ(k)

while ∥ρ(j+1)−ρ(j)∥
∥ρ(j)∥ ≤ ϵ2 and j < WF iter do

ρ(j+1) ← ρ(j) − τ(j+1)

∥ρ0∥2∇J
(
ρ(j)

)
j ← j + 1

end while
ρ(k+1) ← ρ(j)

ṽ(k) ← ρ(k+1) + u(k)

v(k+1) ← prior update using rWF-TV/BM3D/DIP
u(k+1) ← u(k) + ρ(k+1) − v(k+1)

k ← k + 1
end while
return ρ(k+1)

of the positive semi-definite matrix Y =
∑M

m=1 dmLmLH
m is

chosen as the initial estimate [8]. The update step for ρ is
given by:

ρ(j+1) = ρ(j) − τ (j+1)

∥ρ0∥2
∇J (ρ(j)), (14)

where J (ρ(j)) = D(ρ(j))+ µ
2 ∥ρ

(j)−ρ̃(k)∥22 and its derivative
is expressed as:

∇J (ρ(j)) =
1

M

M∑
m=1

(
LH
mρ(j)(ρ(j))HLm − dm

)
LmLH

mρ(j)

+ µ(ρ(j) − ρ̃(k)), (15)

where τ (j) denotes the step size at the jth update. The sub-
problem (13) is a straightforward update step for u.

The sub-problem (12) depends on the choice of prior and
can also be viewed as a denoising operation. In order to solve
(12) and facilitate efficient reconstruction, we employ several
denoisers/regularizers. For rWF formulation, we experiment
with Total Variation (TV) which is known to provide robust
image recovery from reduced measurements [24]. Upon appli-
cation, (12) results in:

v(k+1) = argmin
v

2λ

µ
∥v∥TV +∥v−ṽ(k)∥22. (rWF-TV) (16)

We also use BM3D denoiser [17] with regularized Wirtinger
Flow and refer it as rWF-BM3D. In our work, we have
used the MATLAB implementations of Total Variation and
BM3D available at [25], [26] respectively for updating v.
Further, we also employ the recently proposed Deep Image
Prior [18] which is an unlearned convolutional neural network
(CNN) capable of solving inverse problems in a training-less

setting. Here, contrary to using any explicit regularizer R(ρ),
the architecture of a CNN works as an implicit prior with
regularization by early-stopping. Algorithm 1 summarizes the
PPSAR approach.

IV. RESULTS

For the purpose of comparison, we use similar simula-
tion setting as that of [8]. The transmitter is located at
[15, 15, 0.5]Km and is assumed to transmit a DVB-T signal
having a flat spectrum of bandwidth 8 MHz modulated with a
carrier frequency of 760 MHz [27]. This bandwidth provides
a range resolution of around 20m. We consider a scene of
[0, 420] × [0, 420]m2 which is discretized into small cells of
size 21 × 21 given the 20m resolution. The SAR platform
is assumed to move along a circular trajectory path given
by γ(s) = [10 cos (s), 10 sin (s), 6]Km. Further, in all our
simulations, we fix the number of fast-time samples to 50 and
vary the number of slow-time samples to change the num-
ber of measurements M . Taking 50 samples would amount
to taking a fast-time measurement of duration 6.25µsec at
each slow-time measurement interval (assuming the uniform
sampling rate of 8 MHz). Observe that the aforementioned
simulation parameters satisfy the far-field, small scene and
start-stop assumption made in Section II. Further, we have
used the strategy of choosing λ based on the size of the
measurements. In our simulations, we found that this strategy
works reasonably well.

We compare the reconstruction obtained using three varia-
tions of the proposed rWF approach that use different regu-
larizers/denoisers namely, BM3D, TV and DIP as described
in section III. These variations are also compared with the
existing vWF, LRMR [7] and Reweighted Wirtinger Flow
(RWF) [28] methods. For this, we considered synthetic images
taken from [29], two of which are depicted in Fig. 1a and 2a.
We vary M by varying the number of slow-time samples.
Fig. 1 and Fig. 2 show the reconstruction results of the three
regularized techniques with the vWF approach for M = 500,
1000 and 6000 phaseless passive SAR measurements. Looking
at the results, it can be noticed that the proposed rWF produces
better quality reconstructed images even with fewer measure-
ments as compared to vWF. Among rWF approaches, BM3D
tends to produce slightly blurry images while TV generates
better resolved images. Observe that DIP also promotes image
recovery and gives performance comparable to that of TV
over a certain range of values of M , however its performance
degrades when M is very small.

Fig. 3 provides a quantitative comparison between the vWF,
LRMR, RWF and the rWF approaches. From Fig. 3, it can be
noticed that rWF-TV provides satisfactory reconstruction from
M = 1000 onwards and the PSNR gradually improves with
the increase in M . Whereas, rWF-BM3D and rWF-DIP require
slightly more samples to give satisfactory PSNR values. In the
case of vWF and RWF, the improvement in PNSR happens
only after a large M . Thus, a significant performance gap
between vWF and rWF-TV/DIP can be observed between
M = 1000 to 4000. Further, it is verified that the LRMR
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 1: Reconstruction results for scene 1. (a) Ground truth.
M = 500, 1000 and 6000 for first, second and third row
respectively. Reconstruction results using vWF (first column),
rWF-BM3D (second column), rWF-TV (third column) and
rWF-DIP (fourth column).

approach performs poorly than the vWF and obviously the
rWF approach.

Finally, we compare the robustness of rWF, vWF and RWF
for trajectory errors. For fair comparison, we have taken M =
6000 since all techniques perform fairly well at this value (see
Fig. 3). Fig. 4 shows the plot for PSNR vs trajectory error from
which it can noted that while all the approaches fail beyond
5m, the RWF and the proposed rWF approaches show better
robustness at lower trajectory errors.

Thus, the above results clearly demonstrate that the pro-
posed rWF provides improved image reconstruction even
with fewer phaseless measurements. In particular, rWF-TV
provides at least 75% reduction in number of measurements
as compared to existing vWF for a similar performance. In
addition to providing this significant reduction, the proposed
approach also shows more robustness against trajectory errors,
hence making it attractive for PPSAR imaging.

V. CONCLUSION

A training-less regularized WF based approach is presented
in this paper for PPSAR imaging. The reconstruction is
achieved using ADMM iterations by employing state-of-the-
art denoising algorithms, namely, Total Variation, BM3D and
DIP as priors. Simulations are performed to evaluate the

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 2: Reconstruction results for scene 2. (a) Ground truth.
M = 500, 1000 and 6000 for first, second and third row
respectively. Reconstruction results using vWF (first column),
rWF-BM3D (second column), rWF-TV (third column) and
rWF-DIP (fourth column).

performance that show a significant reduction in the requisite
slow-time samples and robustness against trajectory errors.
This reduction ultimately curbs the necessity for large on-
board storage and high speed data transfer, thus making the
proposed approach attractive for PPSAR imaging.
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