
Flexible Extended Nested Array with Multiple
Subarrays Achieving Improved Degrees of Freedom

Steven Wandale1 and Koichi Ichige2

Department of Electrical and Computer Engineering, Yokohama National University

79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
1wandale-steven-vf@ynu.jp,2koichi@ynu.ac.jp

Abstract—This paper proposes a new extended nested array
geometry with enhanced degrees of freedom (DOF) and a hole-
free difference co-array. The proposed flexible extended nested
with multiple subarrays (f−ENAMS) configuration is constructed
by splitting the dense subarray of the nested array (NA) into four
subarrays and relocating them on either side of the NA configu-
ration to maximize the DOF. Several conditions are provided for
a specific design to guarantee the continuity of the difference co-
array (DCA). Compared to other sparse arrays, f−ENAMS offers
improved DOF, which leads to high-resolution DOA estimation.
Simulation examples are presented to demonstrate the superiority
of the proposed f−ENAMS array configuration.

Index Terms—Extended nested array, direction-of-arrival esti-
mation, degrees-of-freedom, mutual coupling.

I. INTRODUCTION

Recently, non-uniform linear arrays (also known as sparse

arrays) have become more attractive than conventional uniform

linear arrays (ULAs) for several reasons [1]–[4]. To begin

with, in the view of the difference coarray (DCA) concept,

sparse arrays can achieve enhanced DOFs from O(N) to

O(N2), and are, hence, able to resolve more uncorrelated

sources than the number of sensors [5]–[6]. Also, the larger

intersensor spacing between the sparse array sensors reduces

the mutual coupling (MC) effect between sensors compared to

their conventional ULA counterparts [6]. There are different

approaches to realizing such arrays, and the most prevalent

ones include (a) the use of machine learning and evolutionary

search-based algorithms to synthesize sparse arrays dynam-

ically for joint properties such as hole-free co-arrays, low

peak side lobes, and optimum far-field performance [7]–[9],

and (b) the design of static sparse arrays with closed-form

expressions for joint requirements like hole-free co-arrays and

fewer mutual coupling effects [5]–[6], [10]–[20]. In this paper,

however, we focus on the latter.

Sparse arrays that are well-known include minimum re-

dundancy arrays (MRAs) [3], minimum hole arrays (MHAs)

[4], coprime arrays (CAs) [5], and nested linear arrays (NAs)

[6]. Despite their popularity, the MRA and MHA do not

have closed-form expressions for sensor locations [4]–[6]. The

CAs have holes in their DCAs, and therefore, the realized

DOF is less than that of MRA and NA [6]. Also, NA has

a severe mutual coupling effect owing to the existence of
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a dense ULA [10]. As a result, numerous variants of the

NA and CA arrays have been proposed to either enhance the

DOF or reduce the mutual coupling effect further [11]–[20].

For instance, variants such as the super nested array (SNA)

[10], and generalized nested array (GNA) [11] were proposed

to reduce the mutual coupling effect, whereas generalized

coprime array (GCA) [12], thinned coprime array (TCA) [13],

augmented nested array (ANA) [14], enhanced nested array

(ENA) [15], improved nested array (INA) [16], Iizuka NA

[17] and one or two-side extended nested array (OS/TS-ENA)

[18] were proposed to improve the DOF.

Interestingly, some, like the sparse array with the max-

imum interelement spacing constraint (MISC) [19] achieve

both improved DOF and less MC effect. In [20], we pro-

posed extended nested array geometry with multiple subarrays

(ENAMS). Although ENAMS has all the good properties of

NA, and enhanced DOF, the realized DOF is still limited

compared to MISC and OS/TS-ENA arrays. This indicates that

there is still substantial potential for improvements regarding

either enhancement of DOF or reduction of MC effect of

prototype sparse arrays such as a nested array, coprime array,

and ENAMS array.

This paper proposes a flexible extended nested with multiple

subarrays (f−ENAMS) configuration with improved DOF. The

proposed f−ENAMS is constructed by splitting the dense

subarray of the NA into four subarrays and relocating them

on either side of the NA configuration to maximize the DOF.

This work extends the work in [20], where an extended nested

array with multiple subarrays (ENAMS) is derived. More

importantly, f−ENAMS has a closed-form expression for sen-

sor positions and corresponding achievable DOF. Simulation

examples are presented to validate the merits of the proposed

extended nested arrays in terms of maximum DOF and DOA

estimation performance.

Section II describes the co-array signal model. Section

III describes the f−ENAMS array design, and Section IV

explores DOA estimation examples with f−ENAMS. Section

V concludes this work.

Notations: Operator vec(·) and diag(·) denote vector-

ization operation and diagonal matrix, respectively. ⊗ is the

Kronecker product and E
[
·
]

is a statistical expectation

operator. The ξ(A) = {ai − bj |ai, bj ∈ A} and ξ(A,B) =
{ai − bj |ai ∈ A, bj ∈ B} denote self-difference set and cross-

difference set, respectively. 〈r1, r2〉 presents an integer set
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{r ∈ S|r1 ≤ r ≤ r2} and S = {0,±1,±2, . . .}.

II. DIFFERENCE CO–ARRAY SIGNAL MODEL

Consider a sparse linear array (SLA) with N−sensors,

whose sensor positions are nid where ni belongs to S =
{ni}Ni=1 and d = λ/2 is the unit intersensor spacing, with

λ being the wavelength of the carrier frequency [1]. Assume

K uncorrelated narrowband far-field sources from directions

θk, k = 1, 2, ...,K are impinging on a SLA [2]–[5]. Then, the

received signal vector at time t can be expressed as

x(t) = Bs(t) + n(t), (1)

such that s(t) = [s1(t), s2(t), . . . , sK(t)]T is the signal vector

and n(t) denotes the zero mean white Gaussian noise vector

with variance σ2
nIN , where σ2

n is the noise power. Moreover,

B = [b(θ1), b(θ2), . . . , b(θK)] is the array manifold whose

k-th source steering vector b(θk) can be expressed as

b(θk) = [ejπd1 sin(θk), ejπd2 sin(θk), . . . , ejπdN sin(θk)]T . (2)

The covariance of x(t) can be defined as

Rxx = E
[
x(t)xH(t)

]
= BRsB

H + σ2
nIN , (3)

where Rs = E
[
s(t)sH(t)

]
≈ diag([ρ21, ρ

2
2, . . . , ρ

2
K ]) is the

signal covariance matrix and ρ2k denotes the signal power. In

practice, the sampled snapshots are limited as such (3) can be

approximated as

R̂xx =
1

T

T∑
t=1

x(t)xH(t), (4)

where T is the number of snapshots. According to [21]–[22],

vectorizing (3) yields

y = vec(R̂x) = (B∗ �B)pc + σ2
n1N , (5)

where 1N = vec(IN ), and (B∗ �B) denotes the extended

array manifold of difference co-array D. The DCA is defined

as the difference in sensor positions of a sparse array S [5].

Namely,

D = {n1 − n2|n1, n2 ∈ S}. (6)

The repeated and discrete lags in y are sorted and removed.

Then, a spatial-smoothing MUSIC (SS-MUSIC) [21] can be

used to estimate DOAs.

Definition 1. (Uniform DOF): Given a sparse array S and
corresponding DCA D, the consecutive co-array U can be
given as

U = 〈−Ru, Ru〉 ⊆ D, (7)

where −Ru and Ru restrict the range of the consecutive co-
array U. Thus, the cardinality of D, U and Ru are known as
the DOF, uniform DOF (uDOF) and one-side uDOF [19].

This implies that the number of uncorrelated sources that a

DOA estimator, i.e., SS-MUSIC, can resolve is (U−1)/2 [5].

As such, it is desirable to design a sparse array configuration

that maximizes uDOF while retaining a hole-free DCA [11].

Definition 2. (Weight Function): The weight function w(�) of
a sparse array S is a number of of sensor pairs that contribute
to coarray index �, i.e.,

w(�) = |{(n1, n2) ∈ S
2|n1 − n2 = �}|, � ∈ D. (8)

It is well documented [10]–[20] that the weight functions

w(1), w(2) and w(3) contribute considerably to mutual cou-

pling effects. Thus, the smaller the values of these weight

functions are, the lower the mutual coupling effect and vice

versa. Hence, a perfect sparse array configuration should

minimize these three weight functions.

III. FLEXIBLE ENA WITH MULTIPLE SUBARRAYS

In this section, we present the flexible ENAMS.

A. Motivation for Extension of ENAMS

The nested array consists of a union of two linear subarrays.

A dense ULA made up of N1 sensors with a unit intersensor

spacing and a sparse ULA comprised of N2 elements with

intersensor spacing of (N1 + 1) [6]. In short, the sensor

positions in NA can be expressed as

Sn = {1, 2, . . . , N1, (N1 + 1), . . . , N2(N1 + 1)}. (9)

However, the existence of a dense ULA increases the mutual

coupling effect in NAs [10]. Hence, to improve the structure

of NA, [20] proposed an extended NA with multiple subarrays

(ENAMS).

The ENAMS consists of five subarrays where the dense-

ULA of NA is split into three subarrays and the sparse ULA

into two. Specifically,

Se =〈1, N1 − 2〉 ∪
(
N1 + 1

)
∪
(
2N2 + 〈0, N2 − 2〉(N1 + 1)

)

∪N2(N1 + 1) ∪
(
N2(N1 + 1) +N1 − 2

)
.

(10)

Even though ENAMS extends the aperture and DOFs of NA,

only two sensors are relocated from the dense ULA of NA

regardless of the number of sensors N . As a result, the

extended DOFs are limited compared to other state-of-the-art

arrays such as MISC [18] and OS/TS-ENA [19].

In ANA [14], NA’s dense ULA was grouped into right/left

subarrays. Then, some sensors from the dense ULA were

relocated to both sides of the sparse ULA of NA, thereby

increasing the DOF and reducing the mutual coupling effect

concurrently [14]. In this work, inspired by the SNA [10] and

ANA [14] configurations, we extend the NA by maintaining

the number of sensors in the sparse ULA of NA and splitting

the dense ULA into the right/left subarrays like [14]. Then,

each of the right/left subarrays is split further into dense and

sparse subarrays, increasing the achievable DOF and reducing

the mutual coupling effect.

B. Flexible Nested Array with Multiple Subarrays

Definition 3. For a pair of integers N1 ≥ 14 and N2 ≥ 1,
the configuration of the f−ENAMS array can be expressed as

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5, (11)
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(a)

1

S1, T − 3 sensors

S2, 3 sensors

S3, N2 sensors

S4, 3 sensors

S5, T − 3 sensors

1 4 8 15 22 29 44 52 60 68 76 79

(b)
−78 0 78

Fig. 1: A schematic representation of the flexible ENAMS array, showing all five of its component subarrays. (a) f−ENAMS

array with N1 = 14, N2 = 2, and N = 16, and (b) corresponding difference co-array. •: sensors, ×: empty spaces.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S1 = {1 + (l1 − 1)|1 ≤ l1 ≤ T − 3},
S2 = {T l2 + 1|1 ≤ l2 ≤ 3},
S3 = {(1 + l3)(N1 + 1)− 1|1 ≤ l3 ≤ N2},
S4 = {N2(N1 + 1) +N1 + l4(T + 1)|1 ≤ l4 ≤ 3},
S5 = {N2(N1 + 1) + 3N1 + 3 + l5|1 ≤ l5 ≤ T − 3},

where T = �N1/2
.

From (11), f−ENAMS consists of five subarrays where the

dense ULA of the NA is split into four ULAs: S1, S2, S4,

and S5. Besides, the sparse ULA of NA is retained as S3 with

N2 sensors. Here, S1 and S5 are made up of T − 3 sensors

with a unit spacing. Unlike ENAMS [20], S2 and S4 are not

fixed to a single sensor but rather contain 3 sensors. Thus, the

flexibility of these sets, coupled with a further reduction of

sensors in S1 and S5, helps to improve the aperture and the

achievable DOF.

Figure 1 depicts the array configuration of f−ENAMS with

N1 = 14 and N2 = 2, and the corresponding difference co-

array. Clearly, it can be observed that the number of sensors in

S2 and S4 is no longer one but three sensors. Based on (11),

the following property holds for f−ENAMS,

Property 1. The DCA of f−ENAMS is hole-free, and it has a
maximum uDOF of

uDOF =

⎧⎪⎨
⎪⎩

N2/2 + 4.5N − 43 16 ≤ N ≤ 19

N2/2 + 4.5N − 13 20 ≤ N ≤ 23

N2/2 + 4.5N + 1 N ≥ 24.

(12)

Proof. The proof of Property 1 is given in Appendix A.

To optimize the DOF, parameters N1 and N2 should be set

as

N1 =

⎧⎪⎨
⎪⎩

2�N/4
+ 6 16 ≤ N ≤ 19

2�N/4
+ 4 20 ≤ N ≤ 23

2�N/4
+ 2 N ≥ 24

(13)

and N2 = N −N1. Thus, given the same number of sensors

N , f−ENAMS has better DOF than [6], [16], [18]-[20].

Moreover, following (11), the weight function w(1) of

f−ENAMS is N1−8 since only N1/2+1 sensors are removed

from the dense ULA of NA, and the remaining are split into

two groups. Consequently, the mutual coupling due to w(1)
is slightly stronger in f−ENAMS than in MISC.

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples to verify the

superiority of the f−ENAMS array in terms of achievable DOF

and DOA estimation performance. The SS-MUSIC [21]-[22]

is used for DOA estimation, and the root-mean-square error

(RMSE) is adopted to quantify DOA estimation performance.

In all examples, NA, improved NA, ENAMS, MISC, and TS-

ENA are used for comparison purposes. For NA, ENAMS

and improved NA, we select parameters N1 = N2 = 11 and

N = 22. As for f-ENAMS, MISC and TS-ENA, we set (N1 =
14, N2 = 8), (N = 22, P = 12) and (N1 = 14, N2 = 7),
respectively. The RMSE computed over 1000 is defined as

RMSE =

√√√√ 1

1000K

1000∑
q=1

K∑
k=1

(θ̃qk − θ̄k)2, (14)

where θ̃qk denotes the estimate of true normalized DOA θ̄k for

qth trial.

A. Achievable DOFs

In the first example, we quantitatively compare the DOF

capacity of the proposed array against other kinds of extended

NAs using the DOF ratio. The DOF ratio is defined as

γ(N) = N2/Ru(N), (15)

where N is the number of sensors, and Ru is the one-side

aperture of U. According to (15), the smaller the γ(N), the

higher the DOF capacity, and the opposite is true [14]. Figure

2 (a) compares the DOF ratios of six kinds of extended NAs.

NA has the highest values of γ(N), while the f−ENAMS

has the lowest possible values, except when N < 19. This is

due to the restriction on the value of N1 as shown in (13) to

guarantee a hole-free coarray. Hence, the achievable DOF of

f−ENAMS when N < 19 is limited. Meanwhile, the γ(N)
values of TS-ENA, MISC, ENAMS, NA, and improved NA

follow those of f−ENAMS in that order.

B. DOA Estimation Performance

In the second example, we evaluate the DOA estimation

performance of the proposed f−ENAMS against other sparse

arrays. We compute the RMSE versus the input SNR when

K = 50 sources are located at θ̄k = −0.3 + 0.6(k − 1)/49
for 1 ≤ k ≤ 50. The number of snapshots is fixed at 1000

while the input SNR varies from −30 to 10 dB. Figure 2

(b) compares the RMSE performance of six kinds of NAs.
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Fig. 2: (a) The DOF ratio γ(N) for 18 ≤ N ≤ 100. (b) RMSE

of DOA estimates versus the input SNR.

TABLE I: Optimal DOF of Various Sparse Arrays

Non-uniform Array Optimal N1 Maximum DOF

Nested [6] N/2 N2/2 +N − 1

Improved Nested [16] N/2 N2/2 + 2N − 3

ENAMS [20] N/2 N2/2 + 2N − 1

MISC [18] 2�N/4�+ 1 N2/2 + 3N − 9

TS-ENA [19] 2�(N + 3)/4� N2/2 + 3.5N − 1

f−ENAMS 2�N/4�+ 2 N2/2 + 4.5N + 1

As shown in Fig. 2 (b), NA performs poorly, followed by

improved NA due to limited DOF. However, f−ENAMS out-

performs the ENAMS, MISC, and TS-ENA arrays. Thus, the

improved DOF of f−ENAMS enhances the DOA estimation

performance.

V. CONCLUSION

This paper presented a flexible ENAMS array design with

enhanced DOF and hole-free co-array. Besides, the array ge-

ometry has closed-form expressions for sensor positions. Sim-

ulation examples demonstrated that the proposed f−ENAMS

offers high-resolution DOA estimation performance compared

to other state-of-the-art extended NAs.

APPENDIX A

PROOF OF PROPERTY 1

The proposition that the DCA of f−ENAMS has a U in

〈−Lu+7N1/2−1, Lu+7N1/2−1〉 where Lu = N2(N1+1)
is equivalent to the argument that for n ∈ U, there exists

at least one pair of sensors that leads to it, and since DCA

is symmetric about the origin, then it suffices to show that

0 ≤ n ≤ Lu+7N1/2−1. As such, we consider the following

cases:

a) Case 1: The lags in the range 〈0, 3N1/2〉 can be

realized by taking the union of ξ(S2, S1) and ξ(S5, S4).
Namely,

ξ(S2, S1) ≈ 〈0, T 〉 ∪
(
N1 − 〈1, 3〉

)
∪ (3N1/2− 〈1, 3〉).

ξ(S5, S4) ≈ 〈0, T − 4〉 ∪ 〈T , N1 − 2〉 ∪
(
N1 − 〈1, N1/2− 3〉

)

∪
(
2(N1 + 1) + 〈1, T − 3〉

)
.

Thus, collectively ξ(S2, S1) and ξ(S5, S4) covers the lags

between S1 and S2.
b) Case 2: The lags in the range 〈3N1/2, Lu +N1 − 1〉

can be realized by taking the union of ξ(S3, S1), ξ(S3, S2),
ξ(S3, S4), ξ(S3, S5) and ξ(S4, S2), such that

ξ(S3, S1) ≈ 〈0, T − 4〉 ∪
(
2(N1 + 1)− 〈2, T − 2〉

)

∪
(
Lu +N1 − 〈1, T − 4〉

)
.

ξ(S3, S2) ≈ T 〈0, 1〉 ∪
(
N1 + 〈0, 1〉

)
∪
(
N1/2 + 〈0, 1〉

)

∪
(
Lu + 3N1/2− 1〉

)
.

ξ(S3, S4) ≈
(
0, T + 1

)
∪
(
N1 + 〈1, 2〉

)
∪
(
N1/2 + 〈2, 3〉

)

∪
(
2(N1 + 1) + (T + 1)〈0, 1〉+ 1

)
.

ξ(S3, S5) ≈ 〈0, T − 4〉 ∪
(
N1 + 1

)
∪
(
2(N1 + 1) + 3〈1, 2〉

)

∪
(
Nu +N1 + 〈1, T − 3〉+ 3

)
.

ξ(S4, S2) ≈ T 〈1, 2〉 ∪ (T + 1)〈1, 2〉 ∪
(
2(N1 + 1) + T + 〈1, 2〉

)

∪
(
Lu +N1 + 〈1, T − 4〉

)
∪
(
Lu + 3N1/2 + 〈1, 2〉

)

∪
(
Lu + 2N1 + 2

)
.

Thus, the union of the five sets covers the lags between the

end of S2 to S3.
c) Case 3: Considering the lags in 〈Lu + N1, Lu +

5N1/2 + 3〉, these lags span the section beginning from end

of S3 and the end of set S4. This section can be filled by the

union of sets ξ(S4, S1), ξ(S5, S2) and some fragments from

Case 2 where

ξ(S4, S1) ≈ 〈0, T − 4〉 ∪
(
Lu + 3N1/2− 〈1, T − 3〉

)

∪ (T + 1)〈1, 2〉 ∪
(
Lu + 2N1 − 〈1, T − 3〉 − 1

)

∪
(
Lu + 5N1/2 + 3− 〈1, T − 3〉

)
.

ξ(S5, S2) ≈ 〈0, T − 4〉 ∪ 〈Nu + 2N1 − 4, Lu + 2N1 − 1〉
∪ 〈Lu + 5N1/2− 4, Lu + 5N1/2− 1〉
∪ 〈Lu + 5N1/2 + 3, Lu + 3N1 − 1〉.

Combining these two sets with segments from ξ(S3, S1),
ξ(S3, S2), ξ(S4, S2) and ξ(S3, S5) yields the lags in the range

〈Lu +N1, Lu + 5N1/2 + 3〉.
d) Case 4: Finally, the lags in 〈Lu+3N1, Nu+7N1/2−

1〉 can be generated from the sets ξ(S5, S1) and ξ(S5, S2), such

that

ξ(S5, S1) ≈ 〈0, T − 4〉 ∪ 〈Lu + 3N1, Lu + 7N1/2− 1〉.
It can be observed that all the lags in

〈Lu + 3N1, Lu + 7N1/2− 1〉 are covered by the two

sets.
In general, the union of Cases (1)-(4) cover the consecutive

integers in 〈0, Lu +7N1/2− 1〉, i.e., the DCA of f−ENAMS

is hole-free. Accordingly, the Ru of f−ENAMS is 〈0, Lu +
7N1/2− 1〉, assuming that �N1/2
 and �N/4
 are N1/2 and

N/4, respectively. The U of f−ENAMS can be expressed as

2Ru+1 ≈ 2N2(N1+1)+7N1− 1. As such, maximizing the

uDOF under the constraint of N = N1 +N2 yields N2/2 +
4.5N − 43, N2/2 + 4.5N − 13 and N2/2 + 4.5N + 1 given

that 2�N/4
 + 6, 2�N/4
 + 4 and 2�N/4
 + 2 in that order

and N2 = N −N1. Therefore, Property 1 is proved.
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