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Abstract—The classical Minimum Description Length (MDL)
approach for detection of the number of sources fails in the
presence of unknown nonuniform noise. In order to solve this
problem, we propose to detect the number of sources by the
global minimization of a newly built MDL criteria, named as the
GM-MDL method. The proposed GM-MDL method first builds a
new MDL objective function, which is a function of the number of
sources and a whitening vector. Afterwards, the genetic algorithm
(GA) is employed to find the global minimum solution of the
newly built MDL objective function, which gives the estimates
of the number of sources and the whitening vector. Simulation
results demonstrate that the proposed GM-MDL method can
estimate the number of sources correctly in the scenarios of
unknown nonuniform and uniform noise. In addition, compared
with the existing methods, the proposed GM-MDL method has
significant improvement when the Worst Noise Power Ratio
(WNPR) is large and/or the signal-to-noise ratio (SNR) is low.
Furthermore, it also demonstrates a good performance in few
snapshots.

I. INTRODUCTION

Detection of the number of sources and direction-of-arrival
(DOA) estimation are two important topics in array signal
processing [1]. Generally, detection of the number of sources
is a mandatory process prior to DOA estimation. It was
first developed in the case of uniform noise. Most of detec-
tion methods can be categorized as a⃝Hypothesis test-based
methods [2]–[4]. b⃝ Information theoretic criteria(ITC)-based
methods [5]–[13].

The ITC methods do not need subjective setting of the
significance level for hypothesis test and they are simpler than
the Hypothesis tests-based methods. Most of them are based
on the eigenvalues of the covariance matrix of the received
array signal, including Akaike information criterion (AIC) [5],
minimum description length (MDL) criterion [6], predicted
eigen-threshold (ET) [7], the Bayesian information criterion
(BIC) [8], and their variants [9]–[13].

In practice, the noise powers at different sensors might be
different due to the imperfect channel response and mutual
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coupling [14]. In this case, the noise is termed as nonuniform
noise. Detection of the number of sources in the case of
nonuniform noise was solved in [15]–[19]. In [15], a mod-
ified Gerschgorin disk estimator (GDE) was developed by
using the unitary transformation of the covariance matrix,
which increases the robustness to the noise model error. Its
performance in a low SNR is limited because it replies on
the separation of signal Gerschgorin disks from the noise
Gerschgorin disks. The second order statistic of eigenvalues
(SORTE) in [16] measures the gap among the eigenvalues. It
is applicable to the case of the nonuniform noise, with the
limitation that the sources are uncorrelated with each other. A
nonuniform noise MDL (named as NU-MDL) was developed
based on successive array element suppression in [17], which
alleviates the effect of nonuniform noise to certain extent and
correctly detects the number of source in small Worse Noise
Power Ratio (WNPR). However, it fails in the case of large
WNPR because nonunifrom noise remains in the rest of array
elements after array element suppression. Detection of the
number of sources based on signal subspace matching (SSM)
was proposed in [18]. It is applicable to both white and colored
noise, in the condition of moderate and high SNRs. In addition,
an invariant SSM method [19] was specially developed for
uniform arrays. It is noted that the above-mentioned methods
detect the number of sources under certain limitations.

In this paper, in order to detect the number of sources with
robustness to different scenarios, we propose a global MDL
minimization-based method (named as GM-MDL), which is
tailored to nonuniform noise. We first analyse that in the
general case, the nonuniform noise causes virtual sources in
addition to the true sources. As a result, the signal subspace
of the array covariance matrix is expanded, which implies the
conventional MDL method will overestimate the number of
sources. Inspired by this fact, we build a new MDL objective
function, of which the arguments are the unknown whitening
vector and the number of sources. The global minimization of
the new MDL objective function gives the correct estimation
of source number and the correct whitening vector. Therefore,
we employ genetic algorithm (GA) to implement the global
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searching in order to detect the number of sources. It is
noted that, similar to the proposed GM-MDL method, the
robust MDL method (named as rMDL) in [20] built an MDL
objective function of which the arguments include the vector
containing the parameters representing the deviations from
the spatially white noise assumption. However, it involves the
steering vectors of assuming sources, the white noise level, the
source signal correlation matrix as arguments as well. Thus,
the number of arguments involved in rMDL is much more
than those in the proposed GM-MDL method.

In the simulation, we compare the proposed GM-MDL
method with the MDL, NU-MDL, SSM methods. Simulation
results demonstrate that the proposed GM-MDL method is
more robust to low SNRs, few snapshots, and large WNPRs.

In Section II, the array model and the conventional MDL
method are briefly introduced. Section III proves that the
nonuniform noise causes virtual sources and thus expands the
signal subspace of the array covariance matrix. Section IV
proposes the GM-MDL method. Section V illustrates the per-
formance of the GM-MDL method and compares it with those
of other methods. The Conclusion is drawn in Section VI.

II. BACKGROUND

A. Data Model

We consider an array is composed of M elements and K
far-field and narrowband sources impinging on the array with
DOAs of (θ1, θ2, · · · , θK). The received signal vector r(t) is
written as follows

r(t) = As(t) + n(t), (1)

where s(t) is the vector composed of K sources; n(t)
is the vector of noises; They are expressed as s(t) =
[s1(t), . . . , sK(t)]T , and n(t) = [n1(t), . . . , nM (t)]T , where
si(t) is the i-th source and nm(t) is the noise at the m-
th element which is Gaussian-distributed random process;
A = [a(θ1),a(θ2) · · · ,a(θK)]. Note that a(θi) is the
steering vector of the i-th the source with a DOA θi and it is
written as

a(θi) = [1, e−j 2π
β d2sinθi , . . . , e−j 2π

β dM−1sinθi ]T , (2)

where dm is the spacing between the m-th element and the
first one, β is the wavelength of the sources, and j is the
imaginary unit.

In the condition that the signal and noise are uncorrelated,
the expected covariance matrix of the received signal is then
expressed as

R = E[r(t)rH(t)] = ARsAH + Rn, (3)

where E[·] is the expectation operation, Rs = E[s(t)sH(t)] is
the source signal covariance matrix, and Rn = E[n(t)nH(t)]
is the noise covariance matrix.

In the case of nonuniform noises, the noise covariance
matrix Rn is a diagonal matrix and it can be expressed as

Rn = diag {pn}
pn = [σ2

1 , σ
2
2 , · · · , σ2

M ], (4)

where σ2
m is the noise power at the m-th element;

σ2
1 , σ

2
2 , · · · , σ2

M are not all equal, and diag {x} represents a
diagonal matrix with diagonal elements composed of x.

B. MDL Method

The AIC and MDL methods both use the ITC for detection
of the number of sources. In this paper, we consider the MDL
method because it is a consistent estimator.

Define the log-likelihood function and penalty function as

L(k) = N(M − k)ln

[
1

M−k

∑M
i=k+1 λi

(
∏M

i=k+1 λi)
1

M−k

]
(5)

P (k) =
k

2
(2M − k)lnN, (6)

where k is a supposed number of sources, N is the number
of snapshots, λi is the i-th eigenvalues of R, and λi for i =
1, · · · ,M is listed in a descend order.

The MDL objective function is given below

MDL(k) = L(k) + P (k). (7)

The MDL method then estimates the number of sources as
follows

K̂ = min
k

MDL(k), k ∈ {0, 1, · · · ,M − 1} . (8)

III. ANALYSIS OF VIRTUAL SOURCES CAUSED BY
NONUNIFORM NOISE

We prove that the nonuniform noise leads to virtual sources,
which causes that the conventional MDL method overestimates
the number of sources.

Without loss of generality, we assume that σ2
M is the

smallest among the noise powers at different antennas and
σ2
1 ≥ σ2

2 · · · ≥ σ2
l > σ2

l+1 = σ2
l+2 = · · · = σ2

M . Then, the
noise covariance matrix Rn can be rewritten as

Rn = σ2
M IM +

l∑
m=1

Qm, (9)

where Qm = diag
{

0m−1, σ
2
m − σ2

M , 0M−m

}
, m = 1, · · · , l,

and 0m is a 1×m vector composed of zero.
Define qm is an M×1 vector and qm = [0m−1, 1, 0M−m]T ,

Qm can be then reformed as

Qm = (σ2
m − σ2

M )qmqH
m. (10)

Thus, according to Eqs.(3), (9), and (10), the covariance
matrix R can be rewritten as

R = ARsAH +

l∑
m=1

(σ2
m − σ2

M )qmqH
m + σ2

M IM . (11)

where IM is an M ×M identity matrix.
Therefore, we have

R = ÃR̃sÃ
H
+ σ2

M IM , (12)

where

Ã = [A,q1, · · · ,ql], (13)
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R̃s =

[
Rs 0(M−l)l

0l(M−l) R1s

]
, (14)

where 0pq is a p× q matrix with all elements equal to 0, and
R1s = diag

{
(σ2

1 − σ2
M ), · · · , (σ2

m − σ2
M ), · · · , (σ2

l − σ2
M )

}
.

According to Eqs.(11)-(14), we can see that the second term
on the right side of Eq.(11) can be treated as the effect of
virtual sources. In addition, qm and σ2

m−σ2
M for m = 1, · · · , l

can be treated as the steering vector and power of the m-th
virtual source, respectively. This, we obtain Lemma 1 below.

Lemma 1: Without loss of generality, in the case that σ2
1 ≥

σ2
2 ≥ · · · ≥ σ2

l > σ2
l+1 = σ2

l+2 = · · · = σ2
M , l noise powers,

which are larger than the smallest one, cause l virtual sources.
Lemma 1 indicates that nonuniform noise expands the signal

subspace of the covariance matrix R, resulting in the overesti-
mate of the number of the true sources by the MDL method.

Assume an uniform linear array is composed of 5 elements
and has half-wavelength inter-element spacing. There are two
far-field sources impinging on the array with DOAs of 30◦

and 50◦, respectively. The two sources have equal power. The
SNR is defined as σ2

s/σ
2
n, where σ2

s is the signal power and
σ2
n is the average noise power defined as σ2

n = 1
M

∑M
m=1 σ

2
m.

Fig.1 shows the estimate of the number of sources by the MDL
method versus SNRs in the following cases:

1) Uniform noises.
2) Nonuniform Noise1: σ2

1 = 10, and σ2
2 = σ2

3 = σ2
4 =

σ2
5 = 1.

3) Nonuniform Noise2: σ2
1 = 10, σ2

2 = 5, and σ2
3 = σ2

4 =
σ2
5 = 1.

From Fig.1, we can see that in the case of uniform noises,
the MDL method correctly estimates the number of sources
when the SNR is not smaller than -5dB. However, in the case
of Nonuniform Noise1, the MDL method overestimates the
number of sources as 3 instead of the true one 2, even in
high SNRs. This is because σ2

1 is not equal to the rests of the
noise powers, which causes one virtual source, as predicted
by Lemma 1. In the case of Nonuniform Noise2, both σ2

1 and
σ2
2 are unequal to the rests of noise powers. As predicted by

Lemma 1, it causes 2 virtual sources. Therefore, in this case,
the estimate of the number of sources in Fig.1 is 4 rather than
the true one 2.

In [20], the phenomenon of virtual sources is noticed in the
numerical experiments as well. However, Ref. [20] does not
provide a proof of virtual sources.

IV. GLOBAL MDL MINIMIZATION-BASED METHOD

Inspired by Lemma 1, we propose a global MDL
minimization-based method (named as GM-MDL), The GM-
MDL method aims to find a whitening vector to whiten
nonuniform noise as uniform one and thus eliminate the virtual
sources, leading to correct estimate of true sources.

We first define a whitening vector w, which is an M -
dimensional vector of which all the elements are positive
and real-valued. In addition, we denote a diagonal matrix
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Fig. 1. Estimate of number of sources by MDL method in the cases of
uniform and nonuniform noises

W = diag {w}, and construct a new covariance matrix as
follows

R̃ = WRWT . (15)

We decompose R̃ as

R̃ =

M∑
i=1

λ̃i(w)vi(w)vH
i (w), (16)

where λ̃i(w) and vi(w) are functions of w.
Therefore, we build a new MDL objective function of both

the number of sources and the whitening vector w as follows

MDLnew(k,w) = Lnew(k,w) + Pnew(k), (17)

where Lnew(k,w) is the new log-likelihood function and it is
expressed as

Lnew(k,w) = N(M − k)ln

[
1

M−k

∑M
i=k+1 λ̃i(w)

(
∏M

i=k+1 λ̃i(w))
1

M−k

]
, (18)

where Pnew(k) is the penalty function considering the nonuni-
form noise, defined as

Pnew(k) =
1

2
(k(2M − k) +M)lnN. (19)

By minimizing the new MDL objective function with certain
constrains on w, we estimate the number of sources as kopt
and obtain wopt below

(kopt,wopt) = min
k,w

MDLnew(k,w)

subject to wT w = 1

0 < w(m) < 1, m = 1, · · · ,M. (20)
k ∈ {0, 1, · · · ,M − 1} .

where w(m) is the m-th element of the vector w, and wHw =
1 ensures that the power of each source signal after whitening
remains the same.

1938



According to Lemma1 in Section.III and Eq.(15), we
observe that the nonunifrom noise is whitened as uniform one
and thus the virtual sources in R̃ disappear if and only if

w = c[
1

σ1
,
1

σ2
, · · · , 1

σM
], (21)

where c is a constant. In this case, the estimated source number
based on R̃ is equal to the true source number K.

Therefore, by using Lemma1 and following a similar
derivation given in [6], we theoretically prove that the
global minimization of the new MDL in Eq.(20) gives

kopt = K

wopt = c0[
1

σ1
,
1

σ2
, · · · , 1

σM
], (22)

where c0 = 1∑M
m=1

1
σ2
m

to satisfy the constrain wT w = 1.

The detailed proof of Eq.(22) is omitted here due to the pa-
per length limitation. The global optimization is implemented
by the GA algorithm in this paper.

V. SIMULATION RESULTS

Assume that the array is composed by 5 elements which are
uniformly linear with half-wavelength inter-element spacing.
Two far-field and narrowband source signals si(t) , i = 1, 2,
imping on the array with DOAs of 10◦ and 30◦, respectively.

The two sources have the same power and the signal-to-
noise ratio is defined as SNR =

σ2
s

σ2
n

, where σ2
s is the source

signal power and σ2
n is the averaged noise power, defined as

σ2
n = 1

M

∑M
m=1 σ

2
m. The number of samples is 1000. The

Worst Noise Power Ratio (WNPR) is defined as WNPR =
σ2
nMax

σ2
nMin

[14], where σ2
nMax and σ2

nMin are the greatest and
smallest noise powers, respectively.

For the GA optimization used in the GM-MDL method, the
population includes 50 individuals; the crossover probability
is set to be 0.7. We compare the performance of the GM-MDL
method with the MDL method [6], the NU-MDL method [17]
and the SSM method [18] in a set of simulated experiments.
Based on 200 trials, the following results are obtained.

Experiment 1 compares the performance with varying SNRs
in the case of uniform noise(that is, WNPR = 1). The result
is shown in Fig. 2. From Fig. 2, we observe that in the case
of uniform noise, the proposed GM-MDL method, NU-MDL,
and MDL perform almost the same. The SSM method can
correctly detect the number of source when the SNR is not
smaller than 5dB. However, it fails in low SNRs. This is
consistent with the simulation analysis in [18].

Experiment 2 compares the performance with varying SNRs
in the case of nonuniform noise with WNPR equal to 2. The
result is shown in Fig. 3. From Fig. 3, we can see that in the
case of nonuniform noise, the MDL method fails regardless
of the SNR. This is due to the fact that the MDL method is
only suitable for uniform noise. The GM-MDL and NU-MDL
methods performs similarly and they are superiors to the SSM
method when the SNR is low (not higher than 0dB).

Experiment 3 compares the performance with varying SNRs
in the case of nonuniform noise with WNPR equal to 15. The
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Fig. 2. Probability of detection versus SNR in the case of uniform noise.

result is shown in Fig. 4. From Fig. 4, we can see that in the
case of nonuniform noise with a large WNPR, the proposed
GM-MDL method demonstrates a robust performance even in
low SNRs. Moreover, the SSM method is also robust to the
large WNPR, with the condition that the SNR is moderate
or high. On the other hand, the NU-MDL fails to detect the
number of sources in a large WNPR. This is because in the
NU-MDL method, nonunifrom noise remains in the rest of
array elements after array element suppression.

Experiment 4 compares the performance with varying snap-
shots when the WNPR and SNR are set to be 5 and 0dB,
respectively. The result is given in Fig. 5. From Fig. 5, it is
illustrated that among the aforementioned methods, the pro-
posed GM-MDL method is the most robust to few snapshots
and gives a probability of detection close to 1 when the number
of snapshots is 20. It is noted that the NU-MDL method
and MDL method in the case of few snapshots provide a
higher probability of detection than that in large snapshots.
This phenomenon for MDL is noticed and analysed in [21] as
well. The reason behind this phenomenon is that both the MDL
and NU-MDL methods rely on the equality of the smallest
eigenvalues. In the case of few snapshots, they might not
detect the differences in the smallest eigenvalues. Therefore,
they will not detect the virtual sources caused by nonuniform
noise, leading to correct detection.

VI. CONCLUSION

In this paper, we prove that the nonuniform noise leads
to virtual sources. Based on this fact, we propose the GM-
MDL method to detect the number of sources in the presence
of nonuniform noise. The GM-MDL method searches for the
global minimization of the new MDL objective function with
the whitening vector and the number of sources as arguments.
Due to the global minimization, the GM-MDL method is
superior to state-of-the-art methods including NU-MDL and
SSM methods in the cases of low SNRs, large WNPR, and
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Fig. 3. Probability of detection versus SNR in the case of nonuniform noise
with WNPR equal to 2.
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Fig. 4. Probability of detection versus SNR when WNPR = 5
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Fig. 5. Probability of detection versus number of snapshots when SNR = 0
dB and WNPR = 5.

few snapshots. In exchange, the GM-MDL method requires
higher computational complexity.
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