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Abstract—Recent advances in simultaneous estimation of both
receiver and sender positions in ad-hoc sensor networks have
made it possible to automatically calibrate node positions – a
prerequisite for many applications. In man-made environments
there are often large planar reflective surfaces that give significant
reverberations. In this paper, we study geometric problems of
receiver-sender node calibration in the presence of such reflective
planes. We establish a rank-1 factorization problem that can be
used to simplify the estimation. We also show how to estimate
offsets, in the Time difference of arrival case, using only the
rank constraint. Finally, we present a new solver for the minimal
cases of sender-receiver position estimation. These contributions
result in a powerful stratified approach for the node calibration
problem, given a reflective plane. The methods are verified with
both synthetic and real data.

Index Terms—TDOA, TOA, reverberations, minimal problems,
self-calibration

I. INTRODUCTION

Accurate receiver-sender node positions are a key prerequi-
site for many applications such as microphone array calibra-
tion, radio antenna array calibration, mapping and positioning
[1]. If all senders and receivers are synchronized, it is possible
to obtain absolute distance measurements between senders and
receivers. These measurements can be used for self-calibration
and such problems (time of arrival problems, TOA) have been
studied in a large body of work [2]–[10]. A variant of the
TOA-problem is time difference of arrival (TDOA), where the
receivers are synchronized and the senders are unsynchronized
[11]–[13].

Large planar surfaces that act as acoustic or radio mirrors
exist in both natural and man-made environments. In such
cases, the received signal contains both the part from the direct
path as well as parts that have been reflected against surfaces.
This has been utilized for GNSS altimetry [14], estimating the
shape of a room [15], [16], and has the potential to be used
in receiver-sender node position calibration [17], [18]. In this
paper, we study how such reverberations can be exploited. In
particular, we study the case of a dominant unknown plane,
e.g., the floor plane. In this case, for each receiver there are
two detections, the direct and the indirect one reflected in the
floor. We assume that these detections are correctly identified,
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Fig. 1: Schematic of the geometry for one sender S and a
mirror pair of receivers (R∧,R∨). Also shown is the direct
distance D∧ and the reflected distance D∨. The sender and
the receivers project to s and r respectively in the unknown
mirror plane, with corresponding distance d.

although, in general, finding which surfaces a particular echo
has bounced of is a problem in itself known as echo labeling
[16], [19]. We study how the geometry of this situation can be
used, study minimal cases of reconstruction and use the new
solvers for robust structure from motion estimation1 . This
leads to a powerful stratified formulation that separates the
problem into TDOA offset estimation, height estimation and
planar position estimation.

II. SYSTEM OVERVIEW AND CONTRIBUTIONS

The general problem we address involves m receiver po-
sitions Ri ∈ R3, i = 1, . . . ,m and n sender positions
Sj ∈ R3, j = 1, . . . , n. These could for example represent
the microphone positions and locations of sound emissions,
respectively. The arrival time of a signal sent from sender j
to receiver i is denoted tij , and the time that it is emitted is
denoted τj . Multiplying the travel time tij −τj with the speed
v of the signal, we obtain the distance between sender and
receiver

Dij = Zij − oj = ∥Ri − Sj∥, (1)

where Zij = vtij , oj = vτj and ∥.∥ denotes the ℓ2-norm.
The speed v is throughout the paper assumed to be known
and constant. Let Zij be noisy measurements that typically
suffer from small approximately Gaussian noise, outliers with

1Code: https://github.com/Etomer/Reflective-Self-Calibration
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substantially larger errors and missing data. Estimating Ri,
Sj and oj from Zij is known as the TDOA node calibration
problem. If the offsets oj are assumed to be known, we
have the corresponding TOA node calibration problem. When
building systems to solve such problems robustly, often a
number of key system components need to be developed.
Some of these are standard components, but some need to be
specifically designed if we have special setups of the geometry.
In this paper, we address such a specific case, namely when we
know that there is a dominant reflective plane present in the
scene. This gives a number of system benefits, but also puts a
number of constraints on the system. In this case, we assume
that we measure both a direct distance D∧ and a reflected
distance D∨ (or Z∧ and Z∨ for the TDOA case). We can
model the reflections using the true receivers R∧, and mirrored
receivers R∨ (see Fig. 1), so that

D∧ij =Z∧ij − oj = ∥R∧i − Sj∥, (2)
D∨ij =Z∨ij − oj = ∥R∨i − Sj∥, (3)

defines our sensor node calibration problem.
In Algorithm 1, an overview of our proposed stratified

approach for solving this node calibration problem is shown.
The specific components that we have developed, and that also
make up the main contribution of our paper, are shown in bold
face.

Algorithm 1 Proposed System (main contributions in bold)

Require: TOA or TDOA meaurements between senders and
receivers with unknown positions in 3D

1: Using the assumption of an (unknown) reflective plane,
separate the problem into a rank-1 problem and a
planar estimation problem (Section III)

2: If we have a TDOA problem, use the rank-1 constraint
to solve for the unknown time-offsets (Section IV)

3: Solve the rank-1 problem in a robust way (allowing for
outliers and missing data). We use a RANSAC [20]
approach, giving the unknown heights of senders and
receivers up to a global unknown parameter. (Section V)

4: Solve for the unknown global parameter and the un-
known planar positions of the receivers and senders in
a robust way using novel minimal solvers. (Section VI)

5: Use non-linear refinement of all unknowns, e.g., by using
gradient descent or Levenberg-Marquardt.

III. MIRROR GEOMETRY

The first thing we must consider is that we have a Euclidean
ambiguity in our solution. This means that for a given solution,
i.e., the position of the dominant reflective plane, senders
and receivers, all Euclidean transformations of the solution
is also a valid solution to the problem. In order remove this
ambiguity, we fix the six degrees of freedoms by specifying
our coordinate system. We do this by choosing the reflective
plane as the z-plane, placing the first receiver on the z-axis and
the second receiver in the yz-plane with positive x-coordinate.

Denoting the z-coordinates (heights) of the receivers gi and
senders hj , and denoting the horizontal distance between Ri

and Sj as dij (see Fig. 1), we get

D2
∧ij = d2ij + (gi − hj)

2 = d2ij + g2i + h2
j − 2gihj , (4)

D2
∨ij = d2ij + (gi + hj)

2 = d2ij + g2i + h2
j + 2gihj . (5)

From these equations we can derive

D∆ij ≡
D2

∨ij −D2
∧ij

4
= gihj , (6)

DΣij ≡
D2

∨ij +D2
∧ij

2
= d2ij + g2i + h2

j . (7)

The first type of equation, (6), only involves the heights, gi
and hj , and not the horizontal distance dij . Grouping together
measurements from several sender-receiver pairs we get

D∆ =

 g1h1 . . . g1hn

...
. . .

...
gmh1 . . . gmhn

 =

 g1
...
gm

(
h1 · · · hn

)
.

(8)
Estimating the heights gi and hj has now turned into a
rank-1 matrix factorization problem. We will discuss solution
strategies for this problem in Section V.

The second type of equation (7) can be used to calculate the
horisontal distances dij between the projections on the mirror
plane of the receivers and senders,

d2ij = DΣij − g2i − h2
j . (9)

This almost leads to an ordinary TOA-problem in one dimen-
sion less, i.e., for the unknown projected receiver and senders
positions ri and sj in the plane (see Fig. 1), we have

d2ij = ∥ri − sj∥2, (10)

where d2ij depends on the estimates of the heights. This
dependance leads to a slightly modified TOA-problem, which
is discussed in Section VI.

The following sections are concentrated on finding robust
initial solutions to the calibration problem. This is typically
followed by nonlinear optimization over all inlier data and
parameters in a least-squares sense, i.e., we minimize a cost
such as∑

ij

L(D∧ij−||R∧i−Sj ||2)+L(D∨ij−||R∨i−Sj ||2), (11)

for a robust loss function L, using some gradient descent
method, e.g., Levenberg–Marquardt.

IV. OFFSET ESTIMATION

In this section, we will show how the rank constraint on D∆

can be used to solve for the offsets oj present when consider-
ing the TDOA-problem. As a reminder, the measurements are
given by Z∧ij and Z∨ij and relate to the distances according
to

D∧ij = Z∧ij − oj , D∨ij = Z∨ij − oj . (12)
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By insertion in (6), we observe that D∆ is linear in oj .

D∆ij =
Z2
∨ij − Z2

∧ij

4
− Z∨ij − Z∧ij

2
oj (13)

The rank-1 constraint on D∆ implies that all 2 × 2-minors
vanish. Each minor will be a quadratic polynomial containing
the monomials {oj1oj2 , oj1 , oj2 , 1} for some indices j1 ̸= j2,
j1, j2 ∈ {1, . . . , n}. The polynomial system formed in this
way can be written Av = b, where A and b only depend on the
data (Z∧ij , Z∨ij) and v collects all non-constant monomials
of the minors. Provided m ≥ 3 and n ≥ 2, the linear system
is well-defined and v can be solved for. The offsets oj are
then easily extracted as the linear monomials in v. Note that
this method only utilizes the rank constraint on D∆, works
independently of the dimension of the space and turns the
TDOA problem into a TOA problem. How to solve the TOA
problem is the topic of the next two sections.

V. HEIGHT ESTIMATION

In Section III, we saw that the full TOA self-calibration
problem, with a mirror plane, decomposes into two separate
problems. The problem of estimating the unknown heights
turns into a low rank matrix factorization problem (8). Given a
solution to this problem, it is clear that the rank-1 factorization
of our data will only be determined up to an unknown
parameter λ ̸= 0, i.e., D∆ = ĝĥT , where g = λĝ and
h = 1

λ ĥ.
If we have no missing data and no noise in our mea-

surement, it is easy to find a solution to the factorization
problem, simply by choosing ĝ as the first column of D∆

and ĥ as the first row of D∆ divided by ĝ1. Consequently,
with m receivers and n senders we only use m + n − 1 of
the mn available equations. There are hence (m− 1)(n− 1)
constraints (invariants) that the noiseless realization should
fulfill. In general, we will have noise, gross outliers and
missing data in our measurement matrix. It is well known that
the least-squares estimate is given by truncating the singular
value decomposition of D∆ to rank one [21]. However, if we
have gross outliers this is not the best estimate, and if we
have missing data we cannot even compute the singular value
decomposition. There has been much previous work on low-
rank matrix factorization [22]–[25].

In this case, we can solve the factorization in an easier
way since D∆ only has rank one and for most of these
problems n ≫ m. We find the solution by fixing ĝ1 = 1
and then solve for ĝi using a RANSAC-voting scheme with
vote j computed as D∆ij/D∆1j . We then solve for each ĥj

by using a RANSAC-voting scheme, where vote i is given
by D∆ij/ĝi. We then decide which entries in D∆ are inliers
by checking which entries in |ĝĥT −D∆| are less than some
chosen tolerance.

VI. PLANAR POSITION ESTIMATION

We will now turn our attention to the problem of estimating
projected planar positions of the receivers and senders in the
mirror plane, given that we have estimates of the heights. In

the previous section, we saw that there were (m− 1)(n− 1)
invariants in the data, that are always fulfilled for noiseless
data. This means that the number of excess constraints E is

E = 2mn− (3m+ 3n− 3)− (m− 1)(n− 1) (14)
= mn− 2n− 2m+ 2. (15)

Setting E = 0 gives the two minimal cases (m,n) = (3, 4)
and (m,n) = (4, 3), which are the minimal amount of data
that is required to solve the full TOA-problem. Note that, in
these cases, the heights are slightly overdetermined when there
is noise in the measurements. From (9) and (10) we get

∥ri − sj∥2 = DΣij − λ2ĝ2i −
1

λ2
ĥ2
j , (16)

where ri, sj and λ are the unknown parameters. The scale λ
is what makes (16) different from a standard planar TOA self-
calibration problem, for which the minimal case is (m,n) =
(3, 3)) [6], [7]. Using algebraic tools, it could be possible
to eliminate the receiver and sender positions from (16),
resulting in equations in only λ. This would enable a complete
separation of the height estimation in the previous section
and the planar position estimation treated here. However, we
have found this elimination to be intractable2. Instead, we
will eliminate only the senders and produce a solver for the
receivers in conjunction with λ.

Our approach for solving the planar TOA-problem together
with λ is to formulate the problem as a polynomial equation
system and then use an existing automatic solver generator
[26]. The generated solver consists of a linear system (the so-
called elimination template), and an eigendecomposition of the
same size as the number of solutions to the problem.

To start, let (m,n) = (3, 4), and fix the coordinate system as
described in Section III, i.e., let r1 = 0. We can then construct
the linear systems Asj = bj , where

A =

[
−2rT2
−2rT3

]
and bj =

[
d22j − d21j − rT2 r2
d23j − d21j − rT3 r3

]
. (17)

Since d21j = sTj sj , we can eliminate the senders and form the
equation system

d21j = bTj (AAT )−1bj for j = 1, . . . , 4, (18)

provided that A is invertible. Here, we will perform a change
of variables, and instead of parameterizing the receivers in the
coordinates ri, we use the squared inter-receiver distances c212,
c213 and c223, where cik = ∥ri − rk∥, as we have observed this
to produce more stable solvers.

For (18) to become polynomial it has to be multiplied with
λ2 det(AAT ), resulting in

det(AAT )(λ2DΣ1j − λ4ĝ21 − ĥ2
j ) = λ2bTj adj(AAT )bj (19)

2The approach is nevertheless possible for the 2D equivalent of the 3D
mirroring problem considered here. Then (m,n) = (2, 2) and the constraint
becomes a single quartic polynomial in λ2.
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Fig. 2: Distribution of distance errors from multiple trials when
providing solvers with noiseless data.

for j = 1, . . . , 4, where

AAT = 2

[
2c212 c212 + c213 − c223

c212 + c213 − c223 2c213

]
, (20)

bj =

[
DΣ2j − λ2ĝ22 −DΣ1j + λ2ĝ21 − c212
DΣ3j − λ2ĝ23 −DΣ1j + λ2ĝ21 − c213

]
. (21)

However, this introduces spurious solutions causing the
ideal generated by the polynomial system to not be zero-
dimensional. For example, if λ = 0 the system reduces to
the single equation det(AAT ) = 0 which has infinitely many
solutions. These spurious solutions can be removed by satu-
rating with the unknowns {c212, c213, c223, λ2} when generating
the solver [9]. The produced solver has 14 solutions and an
elimination template (see [26]) of size 192×206. The template
can be reduced to 88× 102 by saturating with {c212, c213, c223}
algebraically before generating the solver. From the solutions,
ri and dij are easily found, after which sj can be found by
solving the linear systems in (17).

Observe that by relaxing the mirroring constraints on R∧
and R∨, we get the minimal TOA problem (m,n) = (6, 4)
for which solvers already exist [7]. However, those solvers are
slower and unnecessarily big in the sense that they have 38
solutions and a template size of 493× 531 [27]. Furthermore,
together with the offset estimation in Section IV, we have con-
structed minimal solvers also for the TDOA case. Without the
presence of a reflective plane, these problems are significantly
more difficult [28].

VII. EXPERIMENTS

To evaluate the stability of our solvers, we generated syn-
thetic TOA data consisting of receiver and sender coordinates
drawn from N (0, 1). D∧ and D∨ were calculated accordingly
without added noise, and the heights were estimated as in
Section V up to the scaling factor λ. Fig. 2 shows the norm of
the distance errors resulting from the estimated node positions.
As can be seen, the proposed (3, 4) solvers produce smaller
errors than the existing (6, 4) TOA solver. They are also
significantly faster with execution times of 1.6 ms (192×206)
and 0.7 ms (88 × 102), compared to the 18 ms of the (6, 4)
TOA solver.

In order to test our methods in a real setting, we con-
structed a controlled TOA-experiment. We used a number of
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Fig. 3: Distance measurements for the real sound experiment,
with different colors for different microphones. Both the
estimated direct path and the estimated mirror path are shown.
Note that there is a very large amount of missing data.

synchronized microphones and a moving loudspeaker playing
a musical piece. The experiment was done in an environment
which also featured an independent motion capture system, in
order to evaluate the results. Distance estimates were found
using GCC-PHAT [29] between the microphones, and in
order to have a controlled experiment we used the ground
truth to estimate the time offset between the speaker and the
microphones. The resulting measurements for 11 microphones
and 349 speaker positions are shown in Fig. 3. The dataset
contains very little outliers, but very large amounts of missing
data and noise in the measurements. We then proceeded to
estimate both sender and receiver positions, using our stratified
approach. The heights were found as described in Section V,
after which the minimal solver (192 × 206) described in
Section VI was used to estimate initial solutions for ri, sj
and λ. We used the solver in a RANSAC-voting scheme by
letting the solutions vote for the correct height scaling factor.
This gives an initial solution for the planar positions for three
receiver and four sender positions, as well as an estimate
of the global height scale. This solution was then extended
using trilateration, with subsequent non-linear refinement. The
results for the heights and the planar reconstruction are shown
in Fig. 4, where also the ground truth is shown. The resulting
mean errors in 3D-positions were in this case 8.7 cm for the
receivers and 13 cm for the senders. Note that for a majority
sender positions we have only three distance measurements.

VIII. CONCLUSION

In this paper, we have described how dominant reflective
planes can be used to give powerful constraints on TOA
and TDOA node calibration problems. We have developed
tractable methods, that in a stratified way, solves for time
offsets, node heights and planar positions of nodes, using
minimal solvers that can be efficiently applied in bootstrapping
algorithms. We have further applied these methods to both
synthetic and real data, with promising result.
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and senders are shown. The reconstruction has been rigidly registered to the ground truth (in yellow).

REFERENCES

[1] A. Plinge, F. Jacob, R. Haeb-Umbach, and G. A. Fink, “Acoustic micro-
phone geometry calibration: An overview and experimental evaluation of
state-of-the-art algorithms,” IEEE Signal Processing Magazine, vol. 33,
no. 4, pp. 14–29, 2016.

[2] S. T. Birchfield and A. Subramanya, “Microphone array position
calibration by basis-point classical multidimensional scaling,” IEEE
transactions on Speech and Audio Processing, vol. 13, no. 5, 2005.

[3] M. Crocco, A. Del Bue, M. Bustreo, and V. Murino, “A closed
form solution to the microphone position self-calibration problem,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2012.

[4] J. C. Chen, R. E. Hudson, and K. Yao, “Maximum likelihood source
localization and unknown sensor location estimation for wideband sig-
nals in the near-field,” IEEE transactions on Signal Processing, vol. 50,
2002.

[5] P. Pertila, M. Hamalainen, and M. Mieskolainen, “Passive temporal
offset estimation of multichannel recordings of an ad-hoc microphone
array,” Audio, Speech, and Language Processing, IEEE Transactions on,
vol. 21, no. 11, pp. 2393–2402, Nov. 2013.

[6] H. Stewénius, “Gröbner basis methods for minimal problems in com-
puter vision,” Ph.D. dissertation, Lund University, 2005.

[7] Y. Kuang, S. Burgess, A. Torstensson, and K. Åström, “A complete
characterization and solution to the microphone position self-calibration
problem,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2013.

[8] K. Batstone, M. Oskarsson, and K. Åström, “Robust time-of-arrival
self calibration with missing data and outliers,” in European Signal
Processing Conference (EUSIPCO), 2016.

[9] V. Larsson, K. Åström, and M. Oskarsson, “Polynomial solvers for sat-
urated ideals,” in International Conference on Computer Vision (ICCV).
IEEE, 2017.
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