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Abstract—In recent years, we observe a growing interest in
approaches to principal component analysis (PCA) based on L1-
norm maximization. Unfortunately, existing L1-PCA algorithms
are either computationally expensive or inaccurate. In this
paper, we propose to use Jacobi-based rotational framework for
solving L1-norm maximization problem. Under this framework,
two new suboptimal algorithms are developed: the first one
based on exhaustive angle search, and the second one based
on a differentiable approximation of the absolute value func-
tion. Experimental studies show that the proposed approaches
provide high accuracy as compared to the existing suboptimal
algorithms. They are also considerably faster than currently the
most accurate method based on bit-flipping. Simulation results
show that both approaches can be used to perform independent
component analysis (ICA) under whitening assumption achieving
better robustness to outliers than other methods.

Index Terms—L1-norm PCA, Jacobi rotations, ICA, outliers

I. INTRODUCTION

Principal component analysis (PCA) [1] is probably one
of the most widely used techniques in multivariate signal
processing. The PCA finds application in many areas, in-
cluding machine learning, data compression, noise reduction,
and statistical analysis. The major goal of the PCA is to
identify orthogonal vectors that span the signal subspace, along
which the data exhibit the greatest variability. Traditionally,
this variability is measured using the Frobenius norm of the
data matrix projected onto a given subspace.

Recently, a growing interest in approaches to the PCA based
on the L1-norm maximization can be observed [2], [3], [4].
Unlike conventional methods, the L1-norm techniques offer
an improved robustness to outliers i.e., data points that differ
significantly from the other observations. Another attractive
feature of the L1-PCA is that, when sources have negative
kurtosis sign, it can perform independent component analysis
(ICA) after data whitening [5]. Conventional PCA can be
easily implemented using singular value decomposition (SVD)
of the observation data matrix or eigen-decomposition (ED)
of the sample covariance matrix. Unfortunately, there are
no such simple solutions for the L1-PCA. Existing L1-PCA
algorithms are either computationally intensive or inaccurate.
Furthermore, the L1-norm maximization problem is not scal-
able. That is it can not be translated into series of the one-
unit problems simply by projecting the data-matrix onto the
null-space of the previous solution. Although the recently
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proposed suboptimal techniques [4], [6] provide significant
computational improvements, their computational complexity
increases quite fast with the number of data samples. Thus in
the era of big data such algorithms can still be prohibitive for
many applications.

The Jacobi-based estimation framework is a well-known
technique for diagonalizing symmetric matrices [7], [8]. It
can also be used in data-driven algorithms [9], [10], [11] for
the iterative transformations of multi-dimensional data through
the plane rotations. These approaches are especially useful
when the solution to the optimization problem is considered
to be an orthogonal matrix. Namely, it is computed iteratively
as a product of orthogonal matrices, specifically the Jacobi
rotations. Although this framework does not guarantee the
global convergence and depends on initialization, it is com-
putationally efficient and easy to implement. In this study,
we propose to use Jacobi-based optimization framework to
solve L1-norm maximization problem. Two approaches are
considered: the first one based on the exhaustive angle search
algorithm, and the second one that uses a differentiable
approximation of the absolute value function and simplified
Newton iteration algorithm. Our experiments show superior
computational efficiency and accuracy of the proposed algo-
rithms, compared to the state-of-art techniques. By means of a
numerical simulation, we also demonstrated that the proposed
methods can be adapted to perform the ICA.

II. L1-NORM MAXIMIZATION

Let X = [x1,x2, . . . ,xN ] ∈ RD×N denotes data matrix
of rank d ≤ min{D,N}, where {xi}Ni=1 are the observation
vectors. Then, the L1-norm maximization problem for K ≤ d
can be formulated as follows:

QL1 = argmax
Q=[q1,...,qK ]∈RD×K

QTQ=IK

K∑
i=1

‖XTqi‖1, (1)

where ‖.‖1 denotes L1-norm that return the sum of the abso-
lute values of the individual entries. Since the absolute value
function is non-differentiable, the problem is difficult to solve.
However, in [3] it was shown that, if XBopt

SVD
= UΣVT , and

Bopt = argmax
B∈{±1}N×K

‖XB‖∗, (2)

where ‖.‖∗ denotes nuclear norm, then QL1 = UVT is
the optimal solution to (1). Therefore, the L1-norm max-
imization can be viewed as a combinatorial problem over
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the binary field. In [3] exhaustive search algorithm with
complexity O(NdK−K+1) has been proposed. A faster, yet
suboptimal, version of this approach is based on consecutive
bit-flipping operations [4]. Its time complexity is of order
O(NDmin{N,D}+N2(K4 +DK2) +NDK3), which can
still be prohibitive for large data sizes. The most computation-
ally efficient algorithm was proposed earlier in [2]. It is based
on the following fixed-point (FP) iteration:

b(t) = sgn(XTXb(t−1)), t = 2, 3, ..., (3)

where b(1) ∈ {±1}N is an initialization point. The principal
vector is approximated by qFP = XbFP/‖XbFP‖2, where bFP
is the converging point of the sequence {b(t)}. In order to
compute (K > 1) principal vectors, X is replaced by its
projection onto the null-space of the previously calculated
ones. The complexity of single iteration is of order O(NDK).
However, the algorithm is rather inaccurate as it violates non-
scalability principle of the L1-PCA problem.

III. PROPOSED METHODS

In the proposed optimization framework, the L1-norm met-
ric is maximized by applying successively orthogonal transfor-
mations (rotations) to the data matrix. Let p, q be two integers
such that 1 ≤ p < q ≤ D, then

G(p, q, θ) =


Ip−1 0 0 0 0
0 cos θ 0 sin θ 0
0 0 Iq−p−1 0 0
0 − sin θ 0 cos θ 0
0 0 0 0 ID−q−1

 ,
(4)

represents Jacobi rotation [7] by the θ angle in the (p, q) plane.
The transformed data matrix at t-th rotation can be written as
follows:

X(t) = G(pt, qt, θt)X
(t−1), t = 2, 3, ..., (5)

with X(1) = WX, where W ∈ RD×D is an arbitrary
orthonormal matrix that defines initialization point. All pos-
sible rotations represented by pairs (pt, qt) are arranged in
so-called sweeps. These sweeps are repeated cyclically until
the maximum number of iterations is reached or when for all
rotations in the current sweep we have |θt| < ε, where ε is a
sufficiently small positive constant. Thus, the solution matrix
QJ ∈ RD×K , can be expressed as follows:

QJ = WT

[ y∏
t

G(pt, qt, θt)
T

]
∗1:K

, (6)

where [ . ]∗1:j denotes first j columns of an argument matrix.
It is crucial for this framework to compute the rotation angles
{θt} sequentially so that a given objective function is gradually
optimized. Let denote by x̂(t)ij (θ) the (i, j)-th entry of the data
matrix (5) evaluated for the angle θt = θ. Then, the L1-norm
objective function at t-th rotation is given by

J
(t)
L1 (θ) =

K∑
i=1

N∑
j=1

|x̂(t)ij (θ)|. (7)

Since the t-th rotation matrix modifies only (pt, qt) rows of
data matrix X(t−1), the increase in objective function at t-th
rotation can be written as follows:

J
(t)
L1 (θ)− J (t−1)

L1 (θt−1) =
∑

i∈{pt,qt}
i≤K

N∑
j=1

|x̂(t)ij (θ)| − |xij |, (8)

where xij denotes the (i, j)-th entry of X(t−1). It is clear that
to get an increase in (7), it suffices to maximize only the first
term in the above sum. In order to make this optimization
framework more flexible, we introduce the following ‘local’
objective function:

J (t)(θ) =

{
Jpt(θ) + Jqt(θ) if pt ≤ K ∧ qt ≤ K
Jpt(θ) if pt ≤ K ∧ qt > K

, (9)

where

Ji(θ) =

N∑
j=1

f
(
x̂
(t)
ij (θ)

)
, i ∈ {pt, qt}, (10)

with f(x) ∈ R being an arbitrary function of x. Please note
that (9) is undefined for pt > K, as the summation range
in objective function (7) covers only indices from 1 to K. It
means the rotations that would have to be performed entirely
in the null-space can simply be omitted.

The first approach, we consider, can serve as a simple base-
line algorithm for other approaches based on Jacobi rotations.
Namely, we assume that f(x) = |x| so that the maximization
of (9) is equivalent to maximization of (7). Since |x| is not
differentiable, one-dimensional exhaustive search method is
used to compute the objective function at M equidistant points
in some pre-defined interval. It can be shown that (9) is
periodic with period π. Thus, our search for the optimal θt
is restricted to the interval [−π/2;π/2).

The second, less expensive approach is to use any differ-
entiable approximation for the absolute value function. For
example, the following function can be considered:

f(x) =
√
x2 + a, (11)

where a is some small positive constant that controls the
smoothness. In this case, a simplified Newton-Raphson proce-
dure [10], [11] can be used to approximate rotation angle

θt ≈
∂J (t)(θ = 0)

∂θ

/∣∣∣∣∂2J (t)(θ = 0)

∂θ2

∣∣∣∣ . (12)

The first- and second-order derivatives of (9) can be computed
as follows:

∂Ji(0)

∂θ
= (2δipt − 1)

N∑
j=1

f ′ (xij)xi′j , (13)

∂2Ji(0)

∂θ2
=

N∑
j=1

f ′′ (xij) (xi′j)
2 − f ′ (xij)xij , (14)

where δij is a Kronecker delta, and i′ = δiptqt + δiqtpt.
The terms f ′(x) and f ′′(x) denote the first- and second-order
derivatives of f(x), respectively.
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Algorithm 1 Pseudocode of the Jacobi-based framework for
maximization of the objective function J(θ, . . .)

Require:
X ∈ RD×N ,K ≤ rank(X),W ∈ RD×D,WWT = ID,
maxIter, ε

Ensure: QJ ∈ RD×K ,QT
J QJ = IK

1: X←WX
2: for k ∈ {1, 2, . . . ,maxIter} do
3: encore← 0
4: for p ∈ {1, 2, . . . ,K} do
5: for q ∈ {p+ 1, p+ 2, . . . , D} do
6: θopt ← argmax

−π/2≤θ<π/2
J(θ, p, q,X)

7: if |θopt| > ε then
8: encore← 1
9: X← G(p, q, θopt)X

10: W← G(p, q, θopt)W

11: if encore = 0 then
12: break
13: QJ ← [WT ]∗1:K

Pseudocode of the Jacobi-based optimization framework
is presented in Alg. 1, where we have tried to maximize
readability, but not the computational efficiency. Please note
that since the Jacobi rotation matrix G modifies only (p, q)
rows, it is not necessary to compute it explicitly. In order to
generate the pairs (p, q), a row-cycling ordering was used, but
other arrangements are also possible. It is easy to see that in
each iteration/sweep, we must perform up to K(K − 1)/2 +
(D −K)K data rotations. Unfortunately, in order to perform
data rotation, we also need to estimate the optimal rotation
angle which is usually more demanding than data rotation
itself. However, both operations, i.e., the transformation of
the data matrix X, and the computation of the rotation angle
depend linearly on the number of data points N . Taking into
account that the exhaustive search algorithm must evaluate the
objective function at M points, time complexity of the single
sweep can be roughly estimated as of order O(MNDK). In
the case of the method based on a differentiable approximation
of |x|, the parameter M should be dropped as the derivatives
(14) are calculated at point θ = 0, only.

IV. EXPERIMENTAL STUDIES

The proposed Jacobi-based methods have been implemented
in the MATLAB environment. For convenience, the exhaustive
angle search algorithm is denoted as L1-JEX, while the
algorithm based on the differentiable approximation is denoted
as L1-JDA. It is rather common that the performance of an
iterative algorithm may vary depending on the stop conditions
and initialization. Therefore, for both approaches, in all ex-
periments, the maximum number of iterations was limited to
100 and the precision parameter ε was set to π/(M = 512).
We found empirically that the proposed methods perform well
when they are initialized using the eigenvectors of the matrix
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Fig. 1: Empirical CDF of performance degradation ratio esti-
mated for various L1-PCA algorithms

XXT . A similar approach was suggested in [4] for the L1-BF
algorithm, where SV-sign initialization was used.

A. Performance degradation

In order to measure the performance degradation attained by
the proposed algorithms, we followed a similar procedure to
that in [4]. Two scenarios were considered: the first one with
D = 4, N = 20, K = 1, and the second one with D = 4,
N = 10, K = 2. In both scenarios, we generated 1000 random
data matrices with entries drawn from a Gaussian distribution
N (0, 1). For each data matrix, the orthonormal matrix Q was
computed by using the state-of-art methods, i.e., L1-BF [4],
L1-FP [2] and proposed ones. The performance degradation
experienced by this matrix on the L1-norm objective function
was measured as follows:

∆(Q,X) =
‖XTQL1‖1 − ‖XTQ‖1

‖XTQL1‖1
, (15)

where QL1 denotes the matrix obtained by the optimal L1-
PCA algorithm [3], for the same data. Fig. 1 presents the
empirical cumulative distribution functions (ECDFs) of (15)
estimated as the fractions of the measurements that are less
than or equal to the specified values. In the first scenario
(K = 1), both the L1-JEX and L1-BF methods return the
exact solution in about 84 percent of runs. However, the
performance degradation attained by the L1-JEX method is,
with empirical probability 1, less than 0.07, which is the
best result among all methods. As expected, the L1-JDA
method is slightly less accurate than the L1-BF algorithm,
but it is superior to the L1-FP method. In the second scenario
(K = 2), the performance degradation is more prominent for
all methods, but once again the L1-JEX algorithm achieves
higher values of the metric (15) more frequently than any other
method. The most significant performance loss can be seen
for the L1-FP method. Please note that the obtained results
are consistent with those in [4]. The small differences are due
to the slightly different data sizes used in this experiment.
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Fig. 2: Average number of sweeps taken by proposed meth-
ods until convergence vs number of observations (left) and
subspace dimensionality (right).

B. Convergence and execution time

Since the sweeps are repeated until convergence is achieved,
the total execution time depends on the convergence rate. A
rigorous convergence analysis of the proposed methods is not
an easy task and is out of the scope of this study. However, we
measured the average number of iterations taken by the pro-
posed algorithms until convergence was reached. The results
averaged over 1000 independent runs are presented in Fig.
2. Average number of iterations shows a weaker than linear
dependence on the number of data points, but there is a strong
linear dependence on the subspace dimensionality. In the case
of the L1-JDA method, it can also be observed that the number
of iterations increases as the parameter a decreases. It is rather
not surprising, since this parameter affects the smoothness
of the objective function and, in turn, the convergence rate
of the Newton method. The L1-JDA approach requires more
iterations to converge than the L1-JEX method, but as will
be shown in the next experiment, these iterations are less
computationally expensive. We also observed that the L1-JEX
method always converged to stationary solution within the
iteration limit, while the L1-JDA method reached this limit
in around 5 percent of the runs.

In order to compare the computational performance of the
proposed algorithms with the state-of-art suboptimal methods
[2], [4], we measured their execution times for various data
sizes. The experiments were carried out in MATLAB envi-
ronment running on AMD Ryzen 5 3550H processor. Fig. 3
presents the execution times obtained for all methods averaged
over 100 independent runs. It can be seen that for K > 1 and
large N , the proposed methods are much faster than the L1-
BF algorithm. Their execution times increase linearly with the
number of data points. This is serious improvement compared
to the L1-BF algorithm, where the execution time increases
quadratically with N . The L1-JDA method is slightly faster
than the L1-JEX method, yet it can not compete with the
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Fig. 3: Average execution times vs number of observations
measured for proposed methods and state-of-art suboptimal
algorithms

L1-FP method, which turns out to be the fastest suboptimal
approach.

C. ICA using L1-PCA algorithms

As shown in [5], the ICA can actually be performed by
L1-PCA after L2-norm whitening. However, when the sources
have positive kurtosis, L1-PCA algorithms should be modified
to perform L1-norm minimization instead of maximization.
Due to high computational demands in this experiment, we
consider only sub-optimal algorithms. Please note that, for
K = 1, they can be efficiently implemented in deflation-
based framework [5], where the ICs are extracted one-by-
one. On the other hand, the results presented in the previous
section show that the proposed methods are also able to
estimate jointly (K > 1) L1-norm components within a
reasonably short execution time. Therefore, we compared an
independent source extraction performance of the proposed
methods, for (K = D = 8) with that of the existing
L1-PCA algorithms (implemented on a deflationary basis).
For comparative purposes also FastICA algorithm [12] with
the fourth-power nonlinearity was implemented as a baseline
ICA algorithm. We considered the synthetic sources all with
negative or positive kurtosis sign generated from uniform and
Laplacian distribution, respectively. In order to evaluate the
robustness of the algorithms against outliers, in one scenario,
2% of randomly chosen observations were replaced with noise
spikes drawn from a Gaussian distribution N (3, 1). In the case
of the Laplacian distribution, all L1-PCA algorithms except
the L1-FP, were modified as suggested in [5]. For example,
in order to perform L1-norm minimization using the L1-JDA
method, it suffices to change sign of the rotation angle in
(12). The separation quality was estimated using the signal-
to-interference ratio (SIR) [11] averaged over all components.
Also, execution times were measured under the same stop
conditions as in the previous experiments. All performance
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TABLE I: Independent sources extraction performance (D = 8).

SIR (dB) Run time (ms)
Distribution uniform Laplacian uniform Laplacian

N 200 400 800 200 400 800 200 400 800 200 400 800
FastICA-4pow 15.69 19.64 23.16 8.33 11.09 14.31 4 2 3 7 3 4

L1-FP 4.62 10.06 15.50 -4.86 -5.35 -5.54 2 4 9 2 3 9
L1-BF 6.16 11.31 15.74 -2.50 -2.60 -2.42 59 197 1007 50 114 513
L1-JEX 12.05 16.86 19.82 13.89 18.43 21.95 50 129 282 66 94 242

L1-JDA (a = 0.1) 13.08 17.44 20.79 14.72 18.60 21.82 22 29 42 44 40 81

TABLE II: Independent sources extraction performance for data contaminated by outliers (D = 8).

SIR (dB) Run time (ms)
Distribution uniform Laplacian uniform Laplacian

N 200 400 800 200 400 800 200 400 800 200 400 800
FastICA-4pow 0.71 -2.47 -1.09 4.09 4.69 7.31 10 15 17 7 3 5

L1-FP 0.14 0.73 3.89 -4.29 -4.70 -5.36 2 5 8 2 3 9
L1-BF 1.08 1.23 4.07 -2.61 -2.21 -2.44 68 294 1277 47 112 508
L1-JEX 4.96 7.55 11.53 10.61 13.77 18.13 53 192 356 71 117 288

L1-JDA (a = 0.1) 5.03 7.60 12.08 11.05 13.78 18.07 22 47 60 53 49 80

metrics were averaged over 100 random realizations of the
sources and the mixing matrices. The results are presented in
Tab. I-II, where the bold fonts indicate the best performance.
The FastICA provides the best source separation quality for
uniform sources, but it does not perform well for Laplacians.
As opposed to the L1-PCA algorithms, it is also very sensitive
to outliers. The proposed methods attain relatively high SIRs
for uniform sources and outperform other L1-PCA algorithms
under all experimental conditions. The L1-JDA method pro-
vides shorter execution times than the L1-JEX. Surprisingly,
there is no clear difference in separation quality between these
methods. Although the proposed methods are not as fast as
the L1-FP or FastICA algorithm, they are faster and more
accurate than the L1-BF algorithm for large N . As can also be
observed, the performance of the L1-BF method for Laplacian
distribution is very poor. The L1-BF algorithm is based on the
maximization of the nuclear norm over binary field, which is
equivalent to maximization of the L1-norm in RD. Since the
L1-norm and the nuclear norm minimization problems are not
related in the same way, the modification proposed in [5] may
not work well in this case. On the other hand, the proposed
methods try to minimize the L1-norm explicitly in RD, which
results in superior source extraction quality.

V. CONCLUSIONS

We found that Jacobi-based optimization framework is well
suited for solving the L1-norm maximization problems. Under
this framework, two novel L1-PCA algorithms have been
proposed. The first one, abbreviated as L1-JEX, performs ex-
haustive angle search for each rotation plane. The second one,
abbreviated as L1-JDA, uses a differentiable approximation for
absolute value function and calculates the rotation angles using
the simplified Newton method. Experimental studies show a
superior accuracy of the L1-JEX method, compared to the
existing algorithms. As compared to the L1-JEX method, the
L1-JDA provides some computational improvements at the

expense of higher L1-norm performance degradation. Nev-
ertheless, both methods are considerably faster than popular
bit-flipping algorithm, especially for large data sizes. In view
of recent discovery on the link between L1-PCA and ICA, it
was demonstrated that the proposed L1-PCA algorithms can
perform ICA under the whitening assumption, and offer better
robustness to outliers than other methods.
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