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Abstract—The block-term tensor decomposition (BTD) model
has been receiving increasing attention as a quite flexible way to
capture the structure of 3-dimensional data that can be naturally
viewed as the superposition of R block terms of multilinear
rank (L,,L,,1), r = 1,2,..., R. Versions with nonnegativity
constraints, especially relevant in applications like blind source
separation problems, have only recently been proposed and they
all share the need to have an a-priori knowledge of the number
of block terms, R, and their individual ranks, L,. Clearly, the
latter requirement may severely limit their practical applicability.
Building upon earlier work of ours on unconstrained BTD model
selection and computation, we develop for the first time in this
paper a method for nonnegative BTD approximation that is also
rank-revealing. The idea is to impose column sparsity jointly on
the factors and successively estimate the ranks as the numbers of
factor columns of non-negligible magnitude. This is effected with
the aid of nonnegative alternating iteratively reweighted least
squares, implemented via projected Newton updates for increased
convergence rate and accuracy. Simulation results are reported
that demonstrate the effectiveness of our method in accurately
estimating both the ranks and the factors of the nonnegative least
squares BTD approximation.

Index Terms—Block coordinate descent (BCD), block suc-
cessive upper bound minimization (BSUM), block-term decom-
position (BTD), hierachical iterative reweighted least squares
(HIRLS), Newton, nonnegative, rank, tensor

I. INTRODUCTION

Nonnegative tensor factorization (NTF) [1], that is, fitting
to a nonnegative tensor a decomposition model with some
or all of its factors being constrained to only have nonnega-
tive entries, has been well-studied for the classical canonical
polyadic decomposition (CPD) and Tucker decomposition
(TD) models, and has found successful applications in numer-
ous areas, including hyperspectral image (HSI) unmixing [2],
spectroscopy [3], neuroimaging [4], and topic modeling [5],
among others. The (almost sure) existence and uniqueness of
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an NTF approximation has been proved for nonnegative CPD
(NCPD) [6, Proposition 10], however the results of [6] provide
positive evidence for other models as well [1]. The minimum
required number of nonnegative simple tensors that sum up to
the given one (referred to with the general term of nonnegative
rank) is no smaller than the number of unconstrained terms.
Most of the NCPD algorithms are of the block coordinate
descent (BCD) type, with nonnegatively constrained sub-
problems. Such an alternating procedure is guaranteed to be
convergent if there is a unique solution per block iteration [7].

However, despite its wide range of applications, NCPD
is not always the most appropriate NTF model. Blind HSI
unmixing is a notable example, where a nonnegative block
term decomposition (BTD) with R rank-(L,,L,,1) terms
more naturally represents the mixture of an equal number of
materials (endmembers) whose fractions at the image pixels
give rise to nonnegative matrices (abundance maps) of rank
L.,r=1,2,..., L, [2]. Moreover, this is only one application
example where the knowledge of R is more important than that
of the specific values of the L,s. As demonstrated in [2], the
latter can be chosen to be all equal (to L) as the unmixing
result is not that sensitive to their choice provided that they
are sufficiently large. Of course, in addition to increasing the
computational complexity of the BTD computation, setting the
L,s too high may hinder interpretation of the results through
letting noise/artifact components interfere with the desired
ones [8].

The BTD model, including its rank-(L,, L,, 1) version of
interest in most applications and in this paper, was first intro-
duced in [9]. For a nearly extensive review of its applications,
the reader may refer to [8]. Methods for computing nonnega-
tive BTD (NBTD) models have only recently been proposed
(see next subsection) and they all share the need to have an a-
priori knowledge of the number of (nonnegative) block terms,
R, and their individual (nonnegative) ranks, L,., a requirement
that may severely limit the practical applicability of these
schemes. Building upon earlier work of ours on unconstrained
BTD model selection and computation [8], we develop in this
paper for the first time a method for NBTD approximation that
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is also rank-revealing. The idea is, starting from overestimates
of R and the L,s, to impose column sparsity jointly on the fac-
tors and successively estimate the ranks as the numbers of fac-
tor columns of non-negligible magnitude. This is achieved with
the aid of an appropriate regularization of the data fidelity cost
function, which respects the hierarchy in the roles of the mode-
1, 2 and mode-3 BTD factors, and promotes their column
sparsity via mixed 1, 2 norm minimization. Following a block
successive upper-bound minimization (BSUM) [10] solution
approach, an alternating hierarchical iterative reweighted least
squares (HIRLS) procedure results, with the constrained sub-
problems being inexactly solved in each iteration with the aid
of projected Newton updates, for increased convergence rate
and accuracy. Besides its rank-revelation ability, the proposed
so-called NBTD-HIRLS algorithm also enjoys low complexity,
as it only involves matrix inversions of small size. Simulation
results are reported that demonstrate the effectiveness of the
proposed scheme in both selecting and estimating the model,
while exhibiting a considerably faster convergence than the
(gradient descent-type) matrix-vector NTF (MV-NTF) method
of [2], even when the latter is given the true model order.

A. Background

Existing methods for computing NBTD models include
those using alternating nonnegative least squares (ANLS) [11]
and nonlinear LS (NLS) [12] with the nonnegativity constraint
being implicitly realized through parametrizing the unknowns
as, e.g., squares of unconstrained parameters. An equivalent
NCPD model could also be computed, followed by a clustering
of its terms with similar mode-3 profiles [13]. Alternating
optimization (AO) using alternating direction method of mul-
tipliers (ADMM) for the inner iterations has been adopted for
NBTD in [14] in the context of hyper-/multi-spectral image
fusion, and for HSI unmixing in [15], where the abundance
maps (not their rank-L,. factors) are directly constrained and
regularized to comply with the spatial priors of these images.

To the best of our knowledge, the only rank-revealing
constrained BTD method proposed to date appears in [13],
where the (Hankel) constraint is imposed only on the low-
rank matrices corresponding to the combined Ist and 2nd
modes of each of the block terms. The mode-3 factor is
left unconstrained instead, while no convergence guarantee is
given for this scheme. It is of interest, however, to mention
at this point that, in practical applications (such as HSI
unmixing), very often it is that matrix that should be kept
nonnegative, not necessarily the mode-1 and mode-2 factors.
In this paper, we will impose the nonnegativity constraint to
all separate modal factors, as it is the case in most of the
existing NBTD literature.

The multiplicative update rule (MUR), well-known from the
nonnegative matrix factorization (NMF) literature [16] and
previously also developed for NCPD [17], was extended to
NBTD in [2] in the context of blind HSI unmixing. This
so-called MV-NTF method has been very popular for the
above application and hence further developed with additional
constraints and regularization; see, e.g., [18]-[20] and refer-

ences therein. However, in addition to requiring an a-priori
estimate of the model order, this method is also known to
be slow in its convergence. This should not be surprising
since it can be viewed as a BCD procedure with projected
(and appropriately rescaled) gradient-descent updates and it is
known that such an algorithm cannot have a convergence rate
higher than linear [21]; see also [22].

Employing projected Newton instead not only leads to
faster convergence but it can also more accurately reveal
the sparse features in the NTF model (since nonnegative
tensors are usually sparse) [23]. In this paper, we adopt the
projected Newton scheme originally proposed in [24] as it
achieves a compromise between plain gradient descent and
fully Newton update, thus offering both low computational
cost and high convergence speed. The way this is realized
is through a partial diagonalization of the Hessian matrix, as
dictated by the division of the unknowns into the restricted
(on or near the feasible region boundary) and free ones,
which amounts to an unconstrained Newton method for the
latter. The result is that the update is to a direction similar
with that of the negative gradient. When accompanied with
a backtracking Armijo rule [24] on the projection arc for
the adjustment of the step size, this ensures the decrease of
the cost function within the nonnegative orthant. The reader
is referred to [25] for an accessible and insightful overview
of this so-called two-metric projected Newton algorithm and
other variations/simplifications thereof. The present work is
also inspired from earlier work of two of the authors on rank-
revealing NMF [26].

B. Notation

Lower- and upper-case bold letters are used to denote
vectors and matrices, respectively. Higher-order tensors are
denoted by upper-case bold calligraphic letters. For a tensor
X, X(n) stands for its mode-n unfolding. ® stands for the
Kronecker product. The Khatri-Rao product is denoted by ®
in its general (partition-wise) version and by ©. in its column-
wise version. o denotes the outer product. The superscript ©
stands for transposition. The identity matrix of order /V and the
all-ones column N-vector are respectively denoted by Iy and
1. We denote by vec(+) the row-vectorization operator and by
tr(-) the matrix trace. The Euclidean and Frobenius norms are

denoted by || - ||2 and || - ||, respectively. [z], = max(z,0) is
the projection of the real number = onto the set of nonnegative
real numbers, R.. M = [N]; stands for the matrix with

nonnegative entries (denoted as M > 0) that results from the
application of []; in all the entries of the matrix N.

II. PROBLEM STATEMENT — THE PROPOSED APPROACH

Given an I x J x K nonnegative tensor Y, its best (in the
LS sense) rank-(L,., L,., 1) NBTD approximation is sought for,

namely
2
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where the matrices A, = [ a,1 an2
Ry B, = [ b1 byo
1,2,...,R,and C = [ c1 ¢ cp | € RE*F, and
the ranks R and L,., r = 1,2,..., R are unknown. We define
A = [ A, A, Ag } and similarly for B. In terms
of its mode unfoldings, the tensor X = Zf‘:l A,Bloc, can
be written as [9]

ar L, ] S
b.r, | € R r =

Xy = (BoC)AT £PAT, )
Xf = (CoA)B"2QBT, 3)
X = [ (A1©Bi)1y, (AR ©cBg)1z, | CT

£ sc” 4)

These expressions will be used in alternatingly solving for
A, B, C, respectively.

In order to make up for the lack of a-priori knowledge of
R and L,.,r = 1,2,...,R in (1), we propose to adapt to
the present context the group sparsity-promoting regularization
that was proved successful in our earlier work on uncon-
strained BTD model selection and computation [8], namely

rewrite (1) as )

R
. S 1 T
Azo,ggcl),czof(A’B’C> 2 Y- Z:IATBT ecr . +
R L
DA, \/Ilar,zH% +brall3 + 7% + ller 3 + 7%, ()

r=1 =1

where A > 0 is a regularization parameter, 1> is a very
small positive constant that is added to ensure smoothness,
and R and L stand for the initial (over)estimates of the model
rank parameters. Observe that this is a two-level hierarchical
regularizer. At the upper level (outer summation), the sparsity
enforcing potential of the 1 » norm is used to eliminate whole
blocks of A and B and the corresponding columns of C. At
the lower level (inner summations), it is the ¢; » norm of the

T

B,
blocks. This regularization can then reduce the overestimates

R = R, and L, = Lj,; of the unknown NBTD model
ranks to their actual values, with a proper selection of the
regularization parameter . The problem in (5) can be solved
via a constrained BCD approach, detailed in the next section.

matrix ' ] that induces column sparsity to the “surviving”

III. PROPOSED METHOD

The objective function in (5) is multiconvex [22], that is,
convex with respect to (w.r.t.) each one of the factors A, B and
C separately but not w.r.t. all of them. It thus makes sense to
alternatingly minimize it w.r.t. one of the factors at each time,
in a BCD manner. Of course, the method has to ensure that
all factors remain within the feasible set and their updates de-
crease the objective function. The development is simplified if
we follow a BSUM approach, that is, successively minimizing
over the nonnegative orthant a surrogate (tight upper bound)
function for each factor and at each iteration [10]. Since the
constrained sub-problems are then to be tackled with the aid of
a projected Newton recursion, we choose quadratic functions

of the type employed in [24], [25] as surrogates. Thus, at
iteration k, the following function
ga(A | A* B* CF) =
f(AR,BF, CF) +tr [(A — A")TVA f(AF, BF, CY)]

1 _
+-——vec(A — AF)THprvec(A — A") (6)
204
upper bounds f at and around Ay, where
Vaf(A¥B* CF) = A¥Hp . — Y (1) P* (7)

is the gradient of f w.r.t. A at the current iteration and
H,: = P'TPF + \D”, (8)

with P* 2 B¥ © CF (cf. (2)) and D* £ (D} ®1;)DE, where
D% is an R x R diagonal matrix with diagonal entries
Di(r,r) =
~1/2

L
lZ IS IB+ IR+ + k3 72| ©
=1

and D% an RL x RL diagonal matrix, whose ((r — 1)L +1)th
diagonal entry is
DY ((r — DL+ (r = DL +1) = ([ak 3 + b3 +9*) 72
(10)

o/j& stands for the sequence of step sizes to be later employed
in the projected Newton updates. Moreover, the ILR x ILR
approximate Hessian in (6) is given by

ﬁAk =1; @ Hpx (11
The corresponding functions and quantities for B and C
are similarly defined, with Hg = QTQ + AD and H¢ =
STS + AD;. Our method then works by inexactly solving the
following constrained sub-problems

AR — arggn;%gA(A|Ak,Bk,Ck)7 (12)
B = argmings(B| A BHCH, (13
CH' = argmin go(C | AM,BM,CY), (14)

in an alternating fashion, using a projected Newton update for

each. For the ith row of A, the index set of the restricted

variables is determined as

IX,, = {7 |0 < [AF]i; < i, [Vaf(A* BF, CF)]; > 0},
15)

where € = min(e, ||[A*~V A f(A*, B, C*)||r) with £ being

a very small positive constant (set to 10~5 in our simulations),

and is then used to partly diagonalize the corresponding

Hessian on the block diagonal of (11):

Ta, 0, p#qandpelf orqge Ifu,;

[HAL; ]p,q—{ [Hax otherwise

p:q’

(16)

These matrices are obviously always positive definite and
hence the following projected Newton update

vec(AFT) = a7

[vec(AF) — ok (HEA) ~vec(Va f(AF, BF, CM)].

— Tk
can be realized, where (HIA“)_1 is the block diagonal matrix
with the inverses of the matrices (16) on its block diagonal.
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The step size is adjusted via backtracking (Armijo rule) on
the projection arc; see [24]-[26] for details. An analogous
procedure is followed for the remaining sub-problems. The
steps of the proposed algorithm are tabulated as Algorithm 1.
Its hierarchical iterative reweighted least squares (HIRLS)

Algorithm 1: NBTD-HIRLS algorithm
Data: Y, \, R = Rini, L = Lipi;,e >0
Result: Best approximation of Y in the sense of (5)
Initialize: AO, BO, C° > o0;
k <+ 0;
repeat

Compute D¥ DX from (9) and (10);

D* «+ (D¥ ®1,)D4;

P’ « B* o CF;

Compute Vo f(A*, B*, C*) from (7);

Find from (15) the index sets for the restricted
variables in A¥;

Compute inverse Hessian, (I_{i‘k*)_l;
Determine the step size, o, using Armijo
backtracking on the feasible direction;
Update A* as in (17) ;
Qk — Ck ® Ak-{-l;
Update B* in an analogous manner;
Sk«
[ (AT o BIT1, (AR @ BE 1L [;
Update C¥*1 in an analogous manner;
k+ k+1;
until convergence;

character lies in the reweighting effect of D4, which imposes
Jjointly block sparsity on A and B and column sparsity on
C, hence helping in estimating R, and that of D, which
promotes column sparsity jointly to the corresponding blocks
of A and B, thus allowing the estimation of the L,’s. The
algorithm enjoys the properties of low complexity (involving
only small-sized matrix inversions) and fast convergence.
Moreover, one may update the rank estimates in the course
of the iterations and drop the redundant blocks and columns
accordingly (pruning).

IV. NUMERICAL EXAMPLES

In this section, the model selection and computation perfor-
mance of the proposed algorithm is evaluated, using synthetic
data, and in comparison with the popular MV-NTF method
from [2]. We simulate 18 x 18 x 10 nonnegative BTD tensors
X of R = 3 block terms with ranks 8, 6, 4, contaminated
by additive noise, that is, Y = X + oN, where N contains
independent and identically distributed (i.i.d) half-normal en-
tries of zero location and unit scale parameters and o is set
S0 as to get a given signal-to-noise ratio (SNR), with SNR
in dB defined as SNR = 10log,(||X||%/(c?|N|Z)). The
entries of the matrices A, and B, and the vectors c, have
been randomly chosen in a similar manner. Our figure of

TABLE I
NMSE COMPARISON IN THE PRESENCE OF NOISE
SNR (dB)
5 10 15 20
NBTD-HIRLS | 0.1186 | 0.0839 | 0.0206 | 0.0061
MV-NTF 0.75 0.286 0.1413 | 0.0751
10° ‘ ‘
- = ‘MV-NTF
| ——NBTD-HIRLS
\
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\
=
e Y ~
~
S ~
-~
107 S~eo
0 50 100 150 200 250 300
Iterations

Fig. 1. NMSE of NBTD-HIRLS and MV-NTF vs. iterations for SNR=20 dB.

merit for the tensor approximation accuracy is the normalized
mean squared error (NMSE) over the blocks, defined as

NMSE(A,B,C) = L8 |A.B oc, —A, BT oé, |2

[A-BYoc, |7
(A,B,C) and (A,B, C) denote the true and the estimated
factors, respectively. For the stopping criterion, we use the
relative difference between two consecutive estimates of the
relative reconstruction error (RE), ||y — X||¢/||Y||p. The
algorithms stop either when this relative difference becomes
less than 10~ or a maximum of 300 iterations is reached. The
regularization parameter A is fine-tuned so that the minimum
RE is attained. A useful rule of thumb is to so select it as
to be proportional to (a small fraction of) the total number
of unknowns and an estimate of o. For each realization, both
algorithms are randomly initialized for 10 times, and the best
run among them, in terms of the RE, is kept. For NBTD-
HIRLS, R;,; = 10 and L;,; = 10, while MV-NTF is assumed
to know the true R, with all L,s assumed equal to their
maximum value, 8.

In Table I, we report the medians of the NMSEs obtained
over 20 independent realizations and at various SNR levels.
Clearly, and despite the a-priori model order information
made available to MV-NTF, the proposed algorithm exhibits a
much better estimation performance (identifying the factors
A,BT and c,, subject to the inherent scaling ambiguity).
This is also true for their convergence rates, as illustrated in
Fig. 1 for the example of SNR=20 dB. The frequencies (over
20 independent realizations) of the model ranks recovered,
again at SNR=20 dB and normalized to [0,1], are depicted
in Fig. 2. Note that the frequencies for the L, estimates
were only counted for the realizations where R was exactly
revealed. Observe that R is recovered almost perfectly, with
only a very small overestimate being rarely obtained. In
practical applications, this would be much less severe than
an underestimation. The L,s are estimated with a small error,

, wWhere
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Fig. 2. Frequencies of the R and L, estimates, at SNR=20 dB.
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Fig. 3. Estimates of R (left) and the L.s (right) vs. iterations, for a single
realization. SNR=20 dB.

again expected to be harmless in NBTD applications like
HSI unmixing. The evolution of the rank estimates with the
iterations is shown, for a single realization and at the same
SNR level, in Fig. 3 and illustrates the possibilities for column
and block pruning in the course of the algorithm.

V. CONCLUSION

The results for NBTD-HIRLS encourage us to further study
this idea for tensor completion [22], [27] and extend the
method to large-scale NTF [28]. Experimentation with real
data, with focus on HSI unmixing (also including sum-to-one
and other relevant constraints) and comparisons with the rest
(ADMM-based) of the existing methods, is among the next
steps to be taken in this context and the results will be reported
elsewhere.

Finally, as pointed out in [29] for NCPD, there exists a
subtle sign ambiguity issue, which does not seem to have been
recognized widely in the NTF literature. We need to revisit our
NBTD algorithm also from this perspective, neglected here for
the sake of simplicity.
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