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Abstract—Super resolution is an essential tool in optics, es-
pecially on interstellar scales, due to physical laws restricting
possible imaging resolution. We propose using optimal transport
and entropy for super resolution applications. We prove that
the reconstruction is accurate when sparsity is known and noise
or distortion is small enough. We prove that the optimizer is
stable and robust to noise and perturbations. We compare this
method to a state of the art convolutional neural network and
get similar results for much less computational cost and greater
methodological flexibility.

Index Terms—optimal transport, Wasserstein distance, super
resolution, compressed sensing, sparse imaging, sparse regular-
ization, sparsity, maximum entropy, convolutional neural network

I. INTRODUCTION AND BACKGROUND

A. Super Resolution

Super resolution seeks to improve image resolution without
further data collection. This is useful when important features
or pixels are missing. Improving the measurement device, such
as a camera or telescope, will improve the image resolution
but only up to limits governed by physical laws, for example
the diffraction limit. Super resolution can increase image
resolution beyond this point given constraints that give a
well-posed inverse problem. The most common constraint
is that the true image is either sparse or smooth in some
basis. For example, Gaussian noise is a common input that
blurs important features. Removing additive Gaussian noise
can be done, imperfectly, by solving an inverse problem that
constrains total variation and hence enforces smoothness [14].

A more general solution is to minimize with respect to a
regularizing term that maximizes sparsity. Compressed sensing
methods often minimize an objective function involving the L1

norm of the solution [3]. Minimizing L0 maximizes sparsity
but L1 is usually used instead for its convex properties.
Another regularizer that maximizes sparsity is entropy [4],
[10]. Neural networks or deep learning has more recently been
used for inverse problems, especially on images [15].

B. Optimal Transport

Optimal transport has a long history in pure and applied
mathematics, and has been used recently in the field of
imaging [6]. One starts with a source distribution, µ ∈ P(X),
target distribution, ν ∈ P(Y ), and a cost C : X × Y → R on

spaces X and Y . In the discrete setting relevant to scientific
computing (where X and Y are finite sets), distributions are
represented as finite dimensional vectors. Given two positive
vectors of L1-norm equal to 1, µ ∈ Rn

>0, ν ∈ Rm
>0, together

with a cost C represented as an n×m matrix (Cij), the optimal
transport plan between µ and ν is

arg min
P∈Π(µ,ν)

n∑
i=1

n∑
j=1

CijPij (1)

where Π(µ, ν) is the set of transport plans from µ to ν:

Π(µ, ν) = {P ∈ Rn×m :

n∑
i=1

Pij = νj ∀j,
n∑

j=1

Pij = µi ∀i}.

When m = n and C defines a metric on {1, . . . , n} (i.e.
d(i, j) := Cij is symmetric, non-degenerate, and satisfies the
triangle inequality) then the minimum value

dW (µ, ν) := min
P∈Π(µ,ν)

n∑
i=1

n∑
j=1

CijPij (2)

defines a metric on P({1, . . . , n}) often referred to as the 1st
Wasserstein metric or just the Wasserstein metric [20].

C. Entropy

For a probability mass function p : J → R (non-negative
and sums to 1), we will use H(p) to denote its entropy,

H(p) = −
∑
ι∈J

p(ι) ln(p(ι)). (3)

As we represent probability densities with vectors and ma-
trices, we will consider the indices to be in the domain J .
In (3), we use the convention that 0 · ln(0) = 0. With this
convention, H defines a continuous non-negative function on
the probability simplex, differentiable in the interior of the
probability simplex and with a derivative unbounded at the
boundary. The key idea is that sparse arrays have low entropy.

D. The Sinkhorn algorithm

The distance dW in Equation (2) can be computed exactly
using methods from linear programming. However, for large
n the quickly growing computation times excludes this from
many applications [6]. In applications involving large data sets,
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dW is often replaced by its entropic regularization, which is
more feasible from a computational perspective [17]. Given
a small constant ϵ > 0, the ϵ-regularized distance between
µ, ν ∈ P({1, . . . , n}) is

dϵW (µ, ν) :=

n∑
i=1

n∑
j=1

CijP
∗
ij (4)

where

P ∗ = arg min
P∈Π(µ,ν)

n∑
i=1

n∑
j=1

CijPij − ϵH(P ). (5)

The regularized objective function in (5) is strictly convex
and proper, hence always admits a unique minimizer. While
the minimizer in the true optimal transport problem is usually
very sparse, the entropy term in (5) pushes the minimizer away
from the boundary of the unit simplex, producing a less sparse
minimizer. As ϵ → 0, this minimizer converges to a minimizer
of (2) (the minimizer with highest entropy if there are more
than one), and dϵW converges to dW [17].

A simple application of Lagrange multipliers show that the
minimizer of (5) is the unique element in Π(µ, ν) on the form

Pij =

n∑
i=1

n∑
j=1

fie
−Cij/ϵgj (6)

for some unknown positive multipliers f = (f1, . . . , fn), g =
(g1, . . . gn) [17]. Determining f and g from µ, ν and the
matrix (e−Cij/ϵ) is known as the matrix scaling problem, and a
standard algorithm to find approximate solutions is the iterative
proportional fitting procedure, also known as the Sinkhorn
Algorithm [17]. The matrix (6) lies in Π(µ, ν) if

∑
i Pij = µi

for all i and
∑

j Pij = νj for all j. The Sinkhorn algorithm
proceeds iteratively, alternating between updating f so that the
first of these conditions is satisfied and updating g so that the
second of these conditions is satisfied (see Algorithm 1).

E. Wasserstein Distance Gradient

The multipliers f ∈ Rn and g ∈ Rn in the previous
section can be thought of as dual variables for the optimization
problem (5). More precisely,

F = ϵ ln(f), G = ϵ ln(g)

are the Lagrange multipliers for (4) [6]. When considering
the regularized distance between µ and ν as a function of
µ (keeping ν fixed) this can, at least for positive µ and ν,
be exploited to approximate its gradient (see for example
[8], [12]). The Sinkhorn Algorithm, used to approximate
dϵµ(µ, ν) and its gradient with respect to µ is summarized in
Algorithm 1. Note that the output F and G of Algorithm 1
needs to be projected onto the tangent space of the probability
simplex to yield an approximation of the true gradients.

Remark. In Algorithm 1, if one is only interested the regu-
larized distance dϵW , the assumption of positivity of µ and ν
can be relaxed to non-negativity. However, reflecting the fact
that the entropy term in (4) pushes the minimizer away from
the boundary, any entry Fi in F will return as +∞ if µi = 0.

Algorithm 1: The Sinkhorn Algorithm for Regularized
Optimal Transport Distances
Input:

µ, ν ∈ Rn : positive probability vectors
C ∈ Rn×n : cost matrix
ϵ : positive regularization parameter

Output:
dϵW ∈ R : regularized distance between µ and ν
F ∈ Rn : gradient of dϵW (µ, ν) with resp. to µ at µ
G ∈ Rn : gradient of dϵW (µ, ν) with resp. to ν at ν

Begin:
f = (1, . . . , 1) ∈ Rn

g = (1, . . . , 1) ∈ Rn

while f and g have not converged do
for 1 ≤ i ≤ n do

fi = µi/
(∑

j exp(−Cij/ϵ)gj

)
end
for 1 ≤ j ≤ n do

gj = νj/ (
∑

i exp(−Cij/ϵ)fi)
end

end
dϵW =

∑n
i=1

∑n
j=1 figj exp(−Cij/ϵ)Cij

F = −ϵ ln(f)
G = −ϵ ln(g)

II. WASSERSTEIN INVERSE PROBLEM FOR SUPER
RESOLUTION

We propose two super resolution inverse problems that
produce sparse solutions which are near to the measurement
in Wasserstein distance. For a measurement ν and positive
regularization parameters λ and λ′, we define the sparse
approximation of ν as a minimizer

µ∗ = arg min
µ∈P(X)

dϵW (µ, ν) + λH(µ). (7)

and the sparse retrieval of ν as a minimizer

µ∗ = arg min
µ:dW (µ,ν)<λ′

H(µ). (8)

Problem (7) and (8) are essentially dual, and for generic data
ν there is a mapping λ 7→ λ′(λ) such that µ is a solution to
(7) if and only if µ is a solution to (8). We will approach (8)
from a theoretical perspective in Section III but use (7) in our
application since it fits well into a gradient descent method.

At least one minimizer exists by compactness of the finite
dimensional probability simplex. The entropy term in (7)
favors sparse solutions. Naturally, there is a trade-off between
sparsity of the solution and proximity to the measurement.
How these two objectives are prioritized is governed by λ.
For λ = 0, no priority is given to the goal of sparsity and
µ∗ = ν. As λ increases, µ∗ turns into an increasingly sparse
approximation of ν and when λ → ∞, ∥µ∗∥0 → 1.

This inverse problem is useful whenever there is a natural
distance, or cost function, on the index set of ν. If, for example,
ν is given in Fourier space and each entry µi corresponds to
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a frequency σi, then two natural choices for the cost Cij are
Cij = |σi − σj | and Cij = | ln(σi/σj)|. In the application we
describe below, each entry in ν describes the intensity of a
pixel in a 32×32 image and Cij is chosen as the L2-distance
between the ith pixel and jth pixel.

Remark. This method can be contrasted to maximum en-
tropy methods in statistical physics, where the probability
distribution with highest entropy (under constraints dictated
by observations) is chosen as the best representative of the
current state of knowledge about a system. In our context, we
work with the crucial assumption of sparsity, which motivates
minimizing the entropy instead of maximizing it.

III. MAIN RESULTS

We will let ν ∈ P ({1, . . . , n}) be a sparse signal (i.e.
∥ν∥0 < n is small), and use ν̄ to denote this signal with
noise and distortion. In our application, we are interested in
determining the support of ν (i.e. the indices of all non-zero
entries in ν) from ν̄. For two probability vectors µ and ν we
will say that µ identifies the structure of ν if they have the
same support, i.e. if µi > 0 if and only if νi > 0 for all i. Our
main theorem (Theorem 2 below) shows that the minimizer
of (7) identifies the structure of ν under the assumptions that
ν is sparse and the noisy signal ν̄ is close to ν in optimal
transport distance. As is indicated by Theorem 1 below, the
latter assumption is natural when dealing with Gaussian noise
since the optimal transport distance, unlike total variation and
Lp distances, take the geometry of the space into account.

A. Optimal Transport Bound on Gaussian Noise

Let the probability distribution ν := 1
k

∑k
i=1 δpi

be a
sparse signal in P(Rd) where δ is the Dirac delta. Assume
the noisy signal ν̃ is produced in the following way: For
each pi in the sum above, we sample n points x1

i , . . . , x
n
i

in Rd according to a normal distribution centered at pi with
independent components of variance σ2. Let N = kn be the
number of points sampled and ν̃ = 1

N

∑n
i=1

∑n
j=1 δxj

i
be the

noisy signal.

Theorem 1. Given a sparse signal ν ∈ P(Rd) giving rise
to a noisy signal ν̃ as described above, the optimal transport
distance between ν and ν̃ is bounded by σ2

N XN where XN

is a random variable with distribution χ2
dN . In particular, the

expected value and variance of σ2

N XN are dσ2 and 2dσ4/N ,
respectively.

Proof. The optimal transport cost is bounded from above by
the cost of the transport plan sending each xj

i to pi. The cost
of this plan is 1

N

∑
|xj

i − pi|2. By assumption, each term in
this sum is the squared sum of d normal distributed random
variables with mean 0 and variance σ2.

B. Reconstructing the Support of a Sparse Signal

Theorem 2. Assume ν is a sparse signal and ν̄ is a noisy
signal such that dw(ν, ν̄) < δ. Then the solution of

µ = arg min
µ:dW (ν̄,µ)≤δ

H(µ) (9)

will identify the structure of µ, i.e. have the same support as
µ, if ||ν||0 ≤ ||µ||0 for all µ such that dW (µ, ν̄) < 2δ, with
equality only if µ and ν has the same support.

Remark. The conditions in Theorem 2 can be summarized
as a low enough noise level δ and enough sparsity of the
true signal ν (making it a local minimizer of the L0-norm).
It is interesting to note that these conditions are essentially
necessary: if the inequality in Theorem 2 is violated by some
µ closer than δ to ν̄, then the solution of (9) does not identify
the structure of ν.

Remark. Noise is high entropy, hence it is expected that the
noise can be removed by minimizing the entropy. However,
if the signal-to-noise ratio is too low, this reconstruction is
underdetermined.

Proof of Theorem 2. By the triangle inequality, the feasible
set in (9) is contained in the ball centered at ν̄ of radius 2δ.
As the feasible set in (9) contains ν, this means any solution
of (9) has to be ν or have the same support as ν.

Theorem 3. Fix a positive probability vector ν ∈ Rd
>0 such

that all elements of ν are distinct. Then the sparse recovery
is continuous to perturbations around ν for small λ, i.e. for
every ϵ′ > 0 there exists δ > 0, such that if dW (ν, ν′) < δ,
µ∗ = argminµ∈P(X):dW (µ,ν)<λ H(µ), and
µ′
∗ = argminµ∈P(X):dW (µ,ν′)<λ H(µ) then ∥µ∗−µ′

∗∥ < ϵ′.

Proof. The assumption on ν guarantees that minimizers are
unique for small λ. Continuity of the minimizer then follows
from smoothness of H .

IV. MINIMIZING THE OBJECTIVE

We solve (7) using a gradient descent method with variable
step size. More precisely, letting J(µ) := dϵW (µ, ν) + λH(µ)
be the objective we set the step size to α∗ := sup{α > 0 :
J(µ − α∇J |µ) < J(µ)}. As mentioned in Section I-C, the
entropy is not differentiable on the boundary of the probability
simplex. An effect of this is that the output F in Algorithm 1
is infinity in all indices where µ is zero. We circumvent this
problem by defining the i’th entry in the gradient of J to be 0
whenever µi = 0. Geometrically, this means that whenever the
algorithm reaches a sub-simplex of the probability simplex, it
ignores the component of the gradient orthogonal to this sub-
simplex, thus remaining in this sub-simplex for the rest of the
algorithm. Gradient descent will converge to a local minimum
on the compact probability simplex since the objective is
smooth when restricted to the local simplex face. Algorithm
2 contains the pseudocode and also makes the star cluster
classification described in Section VI.

V. SIMULATION

We first show this method’s results on a low dimensional
example. For example, let the measurement be
ν = (0.2, 0.15, 0, 0, 0, 0.1, 0.15, 0.2, 0.15, 0.1)T . With sparsity
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Algorithm 2: Optimal Transport Star Cluster Predic-
tion

Input:
X ∈ RN×m×m : N images size m×m
λ ∈ R : positive noise level
0 < ϵ < 1 : optimal transportation regularization
C ∈ Rm2×m2

: cost matrix
Jλ,ϵ(x, v) := dϵW (x, v) + λH(v)

Output:
K ∈ RN : star cluster classification

Begin:
K = 0
for i = 1, 2, ..., N do

v = Xi

while v has not converged do
w = ∇dϵW (Xi, ·)|v + λ∇H|v
w = w − ⟨w, 1

m1⟩ ·
1
m1

α = sup{α ∈ R : Jλ,ϵ(v) > Jλ,ϵ(v − αw)}
α = min{0.01, α}
v = v − αw; v = diag(1v>0) v; v = v/∥v∥1

end
Vi = v; δ = maxVi

if rank(H0(V
−1
i ([0.75δ, δ]))) == 1 then

Ki = 1
end

end
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Fig. 1. Plot of super resolution O.T. method Algorithm 2. Red line is initial
distribution. Blue lines are steps along gradient of Equation (7). Pink line is
final, converged distribution. λ = 10. epsilon = 0.1. Max Sinkhorn iterations
= 5000. Gradient step size = 0.01. Gradient steps=50.

parameter λ = 10 the method produces the sparse approxima-
tion (0.35, 0, 0, 0, 0, 0, 0, 0.65, 0, 0). This reflects the fact that
ν has two peaks, one peak centered at position 1 and one peak
centered at position 8, and that 35% of the mass of ν is situated
close to position 1 and 65% of the mass of ν is situated close
to position 8. Figure 1 plots ν, the gradient descent steps, and
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Fig. 2. Plot of super resolution O.T. method Algorithm 2. Red line is initial
distribution. Blue lines are steps along gradient of Equation (7). Pink line is
final, converged distribution. λ = 100. epsilon = 0.1. Max Sinkhorn iterations
= 5000. Gradient step size = 0.01. Gradient steps=50.

the final result. With sparsity parameter λ = 100, the method
produce the sparse approximation (0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
reflecting the fact that most of the mass of ν is part of a peak
centered at position 8. Figure 2 plots ν, the gradient descent
steps, and the final result.

VI. STAR CLUSTERING APPLICATION

TABLE I
CONFUSION MATRIX OF O.T. METHOD ALGORITHM 2 ON LEGUS DATA

COMPARED TO STARCNET [16]. COLUMN GIVES STARCNET
CLASSIFICATION AND ROW GIVES ALGORITHM 2 CLASSIFICATION.

StarcNet Cluster StarcNet Not Cluster
O.T. Cluster 25% (32) 13.3% (17)

O.T. Not Cluster 12.5% (16) 49.2% (63)

The formation and evolution of star clusters provide insight
into the processes governing the birth of stars as well as
the dynamical evolution of galaxies [16]. In order to save
human hours and get reproducible results, it is of interest to
algorithmically detect star clusters in images of sky patches.
Many methods have been proposed to algorithmically detect
star clusters, including CLEAN [11], Multiscale CLEAN [5],
IUWT-based CS [13], decision trees [9] and optimal sheaves
[19]. The state of the art method trains a convolutional
neural network (CNN) to classify each sky patch or region
in an image as containing a star cluster or not [16]. These
neural networks are notoriously computationally expensive,
sensitive to noise, and inflexible to appending or removing
data variables.

We propose using the Wasserstein inverse problem (7) to
detect star cluster locations. Our dataset consists of mea-
surements from the Hubble Space Telescope in the survey
Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet
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Survey) [2]. This data set consists of 32× 32 pixel images of
star patches. Each image comes in 5 frequency bands (NUV,
U, B, V, and I) [2]. We encode each of these in a probability
vector ν where each entry correspond to the intensity of a
pixel, normalized to sum to 1. Algorithm 2 produces a sparse
approximation of each image which is classified as a star
cluster if it contains just one ‘peak’. Specifically, the sparse
image is made binary (1 and 0) by thresholding at 75% of
the max of the image. Then the number of ‘peaks’ is the
number of connected components in the binary image. This is
the rank of the 0th homology of the binary image, denoted
rank(H0(V

−1
i ([0.75δ, δ]))) in Algorithm 2. We perform

this calculation for each of the 5 frequency bands that were
measured. Then these 5 predictions vote with equal weight to
produce the final prediction for the image in question.

Algorithm 2 can be compared to the method of producing
a binary image directly from the source image, without first
producing a sparse approximation, and counting the number
of connected components in this. The accuracy rate of this
naive approach is 46% with respect to the CNN. Algorithm
2 increases in accuracy to 74% with respect to the CNN.
The CNN accuracy rate is 86% with respect to experts, but
even experts agree with each other only around 70%-75% [1],
[9], [21]. Given that experts are the baseline, it is impossible,
without overfitting, for a computational model to do better than
that. Therefore our method provides a very high performance
given that no neural network training, which often takes weeks
of compute time, is required. Additionally, the O.T. method is
less sensitive to noise than a CNN, see [22], which we describe
and bound in Theorems 1, 2, and 3. Finally, with our method,
variables can be simply added and removed where Equation
(7) is quickly recalculated.

We give the confusion matrix in Table I from our cal-
culations. We test on 128 random samples. The maximum
Sinkhorn iterations is 500. The cost Cij is chosen as the
L2-distance between the ith pixel and jth pixel. The H0

threshold is 0.75. The initial gradient descent step size is 0.001.
Wasserstein parameter ϵ = 0.001. Sparsity parameter λ = 1.
When specifying the accuracy rates in the previous paragraph
we use the classification results of the CNN in [16] as the
definition of the correct classification.

VII. CONCLUSION

Optimal transportation is more efficient, robust, and flexible
than CNNs. We proved that optimal transportation will recon-
struct sparse sources and is robust to noise. This is relevant for
correcting distortions and noise in imaging which we showed
for star cluster detection. Another benefit of a predictive model
for star clusters is that it can produce a policy that informs
where future surveys should look for star clusters [7], [18].
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