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Abstract—We consider the problem of nonnegative tensor
completion. We adopt the alternating optimization framework
and solve each nonnegative matrix least-squares problem via
an accelerated variation of the stochastic gradient descent. The
step-sizes used by the algorithm determine, to a high extent, its
behavior. We propose two new strategies for the computation
of step-sizes and we experimentally test their effectiveness using
both synthetic and real-world data.

Index Terms—tensors, nonnegative tensor completion, stochas-
tic gradient descent, accelerated gradient, step-size selection,
Armijo line-search, parallel algorithms, OpenMP.

I. INTRODUCTION

Tensors have recently gained great popularity due to their
ability to model multi-way data dependencies [1], [2], [3],
[4]. The Canonical Polyadic Decomposition (CPD) is one of
the most important tensor decomposition (TD) models. Tensor
Completion (TC) arises in many modern applications such as
machine learning, signal processing, and scientific computing.

Very large scale TD and TC problems are very computa-
tionally demanding. Recently, various approaches have been
proposed to deal with this problem. An effective approach
is the development and implementation of parallel algorithms
(distributed or shared-memory) [5], [6], [7]. From a different
perspective, stochastic gradient descent-based algorithms have
gained much attention, since they are relatively easy to imple-
ment, have low computational cost, and can guarantee accurate
solutions.

In this work, we focus on the CPD model and consider
the nonnegative tensor completion (NTC) problem, using as
quality metric the Frobenius norm of the difference between
the given and the estimated tensor. We adopt the Alternating
Optimization (AO) framework and update each factor via an
accelerated variant (Nesterov-type) of the stochastic gradient
descent [8].

All authors were partially supported by the European Regional Devel-
opment Fund of the European Union and Greek national funds through
the Operational Program Competitiveness, Entrepreneurship, and Innova-
tion, under the call RESEARCH - CREATE - INNOVATE (project code :
T1E∆K− 03360).

A. Related Work

Works that employ Stochastic Gradient Descent (SGD)
on shared-memory and distributed systems for sparse tensor
factorization and completion include [9], [10], [11]. In [9],
the authors describe a TC approach which uses the CPD
model and employs a proximal SGD algorithm that can be
implemented in a distributed environment. In [10], the authors
examine three popular optimization algorithms: alternating
least squares (ALS), SGD, and coordinate descent (CCD++),
implemented on shared- and distributed-memory systems. In
[11], the authors propose a GPU-accelerated parallel TC
scheme (GPU-TC) for accurate and fast recovery of missing
data via SGD.

In [12] and [13], a set of fibers is randomly selected
at each iteration and a stochastic proximal gradient step is
performed. In [14], the authors build upon the work of [13]
and incorporate Nesterov acceleration at each iteration and
a proximal term to deal with ill-conditioned cases. In [15],
the authors propose an SGD algorithm for the Generalized
CP decomposition. They propose various methods for the
sampling of the elements and optimize the cost function using
ADAM. The method can be applied to both sparse and dense
tensors.

B. Contribution

The step-sizes used for the stochastic gradient step as well
as the acceleration step are of great importance because they
determine, to a great extent, the performance of the algorithm.
Motivated by [16] and [17], we propose two strategies for the
computation of the step-sizes. We test the effectiveness of our
proposals using both synthetic and real-world data.

C. Notation

Vectors, matrices, and tensors are denoted by small, capital,
and calligraphic capital letters, respectively; for example, x,
X, and X . RI1×···×IN

+ denotes the set of (I1 × · · · × IN )
nonnegative tensors. The elements of tensor X are denoted
as X (i1, . . . , iN ). Whenever convenient, we use Matlab-like
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notation; for example, A(j, :) denotes the j-th row of matrix
A. The outer product of vectors a and b is defined as a◦b. The
Kronecker, Khatri-Rao, and Hadamard product of matrices A
and B, of compatible dimensions, are defined, respectively,
as A ⊗B, A ⊙B and A ⊛B; extensions to the cases with
more than two arguments are obvious. IP denotes the (P×P )
identity matrix, ∥·∥F denotes the Frobenius norm of the matrix
or tensor argument, and (X)+ denotes the matrix derived after
the projection of the elements of X onto R+.

II. NONNEGATIVE TENSOR COMPLETION

Let X o ∈ RI1×···×IN
+ be an N -th order tensor which admits

the rank-R CPD [3], [4]

X o = 〚Uo(1), . . . ,Uo(N)〛 :=
R∑

r=1

uo(1)
r ◦ · · · ◦ uo(N)

r , (1)

where Uo(i) = [u
o(i)
1 · · · u

o(i)
R ] ∈ RIi×R

+ , for i = 1, . . . , N .
We observe entries of the noise-corrupted tensor X = X o+E .
Our aim is to obtain estimates of the true factors Uo(i), for
i = 1, . . . , N .

Let Ω ⊆ {1, . . . , I1}×· · ·×{1, . . . , IN} be the set of indices
of the observed entries of X and M be a tensor with the same
size as X , with elements

M(i1, i2, . . . , iN ) =

{
1, if (i1, i2, . . . , iN ) ∈ Ω,
0, otherwise. (2)

We consider the NTC problem

min{
U(i)∈RIi×R

+

}N

i=1

fΩ

(
U(1), . . . ,U(N)

)
+
λ

2

N∑
i=1

∥∥∥U(i)
∥∥∥2
F
, (3)

where λ > 0 and

fΩ

(
U(1), . . . ,U(N)

)
=

1

2

∥∥∥M⊛
(
X−〚U(1), . . . ,U(N)〛

)∥∥∥2
F
.

If Y = 〚U(1), . . . ,U(N)〛, then, for an arbitrary mode i, the
corresponding matrix unfolding is given by [3]

Y(i)=U(i)
(
U(N) ⊙ · · · ⊙U(i+1) ⊙U(i−1) ⊙ · · · ⊙U(1)

)T

.

Thus, for i = 1, . . . , N , fΩ can be expressed as

fΩ(U
(1), . . . ,U(N)) =

1

2

∥∥M(i) ⊛
(
X(i) −Y(i)

)∥∥2
F
, (4)

where M(i), and X(i) are the matrix unfoldings of M and X ,
with respect to the i-th mode, respectively. These expressions
form the basis of the AO algorithm for the solution of (3).

A. Nonnegative Matrix Least-Squares with Missing Elements

We consider the Nonnegative Matrix Least Squares problem
with missing elements (NMLSME), which will be the building
block of our AO NTC algorithm.

Let X ∈ RP×Q
+ , A ∈ RP×R

+ , B ∈ RQ×R
+ , Ω ⊆

{1, . . . , P} × {1, . . . , Q} be the set of indices of the known
entries of X, and M be the matrix with the same size as
X, with elements M(i, j) equal to one or zero based on

Algorithm 1: Accelerated stochastic gradient for
NMLSME
Input: X,M∈ RP×Q

+ , B∈ RQ×R
+ , A∗∈ RP×R

+ , λ,
tinit

1 . A0 = Y0 = A∗
2 l = 0
3 while (l <MAX INNER) do
4 for p = 1 . . . P , in parallel do
5 M̂l(p, :) = sample(M(p, :))
6 Compute ∇fΩ̂l

(Yl(p, :))

7 Compute step-size tl,p for gradient step
8 Compute Al+1(p, :) via projected gradient step
9 Compute step-size βl,p for acceleration step

10 Compute Yl+1(p, :) via acceleration step

11 l = l + 1

12 return Al, tl,p.

the availability of the corresponding element of X [18]. We
consider the problem

min
A∈RP×R

+

fΩ(A) :=
1

2

∥∥M⊛
(
X−ABT

)∥∥2
F
+
λ

2
∥A∥2F . (5)

The gradient and the Hessian of fΩ, at point A, are given by

∇fΩ(A) = −
(
M⊛X−M⊛ (ABT )

)
B+ λA, (6)

and

∇2fΩ(A)=(BT⊗ IP )diag(vec(M))(B⊗ IP )+λIPR. (7)

B. Accelerated stochastic gradient for NMLSME

We solve problem (5) via an accelerated variant (Nesterov-
type) of the SGD algorithm which appears in Algorithm 1 and
is described in detail in the sequel. Note that, according to the
structure of the accelerated gradient algorithms, we update two
matrix variables, denoted as A and Y.

During each iteration of the “while” loop, we sample the
available entries of matrix X, leading to an analog of the batch
SGD algorithm. More specifically, in the l-th iteration, we
denote with Ω̂l ⊂ Ω the set of the indices of the sampled
elements and with M̂l the matrix, with the same size as M,
defined as

M̂l(i, j) =

{
1, if (i, j) ∈ Ω̂l,
0, otherwise.

(8)

We define the cost function fΩ̂l
analogously to (5), with M̂l

replacing M.
We create Ω̂l randomly. We define Bl := |Ω̂l| and set c :=

Bl

|Ω| < 1. The algorithm works in a row-wise manner, for rows
p = 1, . . . , P , as follows.

1) In line 5, we sample, uniformly at random, Bl,p :=
⌊c∥M(p, :)∥0⌋ nonzero elements of X(p, :). If Bl,p = 0,
then we skip the p-th row.
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2) In line 6, we compute the gradient ∇fΩ̂l
(Yl(p, :)) as

∇fΩ̂l
(Yl(p, :)) = −

{
M̂l(p, :)⊛

[
X(p, :)

− (Yl(p, :)B
T )

]}
B+ λYl(p, :).

(9)

3) In line 7, compute the step-size tl,p for the gradient
update (the initial value of the step-size is tinitp ). This
is a very important step on which we will elaborate in
the sequel.

4) In line 8, we perform the projected (stochastic) gradient
update

Al+1(p, :) =
(
Yl(p, :)− tl,p∇fΩ̂l

(Yl(p, :))
)
+
. (10)

5) In line 9, we compute the momentum-related step-size,
βl,p. This is the second point on which we shall elaborate
in the sequel.

6) In line 10, we perform the momentum step

Yl+1(p, :) = Al+1(p, :) + βl,p(Al+1(p, :)−Al(p, :)).

For notational convenience, we denote Algorithm 1 as

(Anew, tnew) = S NMLSME(X,M,B,A∗, λ, t
init).

The step-sizes tl,p and βl,p are very important parameters,
which determine, to a great extent, the behavior of the algo-
rithm.

III. STEP-SIZE SELECTION

In this section, we motivate and present three different
strategies for computing the required step-size values.

A. Step-sizes based on “local Hessian”

The first step-size we consider has been proposed in [19]
and its computation is as follows. We define the second
derivative of fΩ̂l

, with respect to Y(p, :), as

Hl,p := ∇2fΩ̂l
(Y(p, :)). (11)

A commonly used step-size, t, for the (projected) gradient
method for the minimization of a smooth convex function f :
Rn → R, is t = 1

L , where L satisfies ∇2f(x) ⪯ LIn, for all
x ∈ Rn [8]. Let Ll,p be the largest eigenvalue of Hl,p. Then,
we set

tl,p =
1

Ll,p
. (12)

Furthermore, by the definition of fΩ̂l
, we have that

Hl,p ⪰ λI. (13)

We can perform the acceleration step using either the constant
step scheme II of [8, p. 80] or the constant step scheme III of
[8, p. 81], or we may choose to neglect the acceleration step
(in this case, we just perform a stochastic gradient step). If we
use scheme II, we compute αl+1,p ∈ (0, 1)

α2
l+1,p = (1− αl+1,p)α

2
l,p + qpαl+1,p, (14)

where qp = λtl,p and α0,p = 1, and set

βl,p =
αl,p(1− αl,p)

α2
l,p + αl+1,p

. (15)

If we use scheme III, we set

βl,p =

√
Ll,p −

√
λ√

Ll,p +
√
λ
. (16)

We note that the computation of Hl,p requires O(Bl,pR
2)

arithmetic operations (in total, O(BlR
2)) and the computation

of Ll,p, via the power method, requires O(R2) arithmetic
operations (in total, O(PR2)). Thus, more efficient methods
for the computation of effective step-sizes are of great interest.

B. Step-sizes based on [16]

Our first proposal is motivated by [16, Section 6]. We start
from an initial value tl,p = tinitp , and perform a projected
gradient step

Y +
l (p, :) =

(
Yl(p, :)− tl,p∇fΩ̂l

(Yl(p, :))
)
+
. (17)

We compute the gradient at the new point, ∇fΩ̂l
(Y+

l (p, :)).
If

∇fΩ̂l
(Y+

l (p, :))
T∇fΩ̂l

(Yl(p, :)) < 0, (18)

then we set tl,p =
tl,p
2 and repeat the procedure until relation

(18) does not hold true. Then, we set Al+1(p, :) = Y+
l (p, :).

Note that if relation (18) holds true, then we have a strong
indication that the gradient step from Yl(p, :) to Y+

l (p, :) is
too long.

If tl,p is the step-size value we used for the computation of
Al(p, :), then we either set

βl,p =

√
1/tl,p −

√
λ√

1/tl,p −
√
λ
, (19)

or compute the value of βl,p it according to (14) and (15).

C. Step-sizes based on Armijo-type Line Search

Our second proposal is an Armijo type line-search technique
motivated by [17]. More specifically, starting from an initial
value tl,p = tinitp , we are looking for a step-size tl,p such that

fΩ̂l

(
(Yl(p, :)− tl,p∇fΩ̂l

(Yl(p, :)))+

)
≤

fΩ̂l
(Yl(p, :))− γ tl,p

∥∥∥∇fΩ̂l
(Yl(p, :))

∥∥∥2
2
,

(20)

where γ is a hyper-parameter. If relation (20) does not hold
true, then we backtrack by a constant factor δ, that is, we set
tl,p = δ tl,p, until the line-search succeeds. The last value of
tl,p is used for the projected (stochastic) gradient step. Note
that the line-search proposed in (20) requires the computation
of the value of fΩ̂l

instead of fΩl
.

For the acceleration step, we either set

βl,p =

√
1/tl,p −

√
λ√

1/tl,p −
√
λ
, (21)

or set the value of βl,p according to (14) and (15).
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Algorithm 2: AO accelerated stochastic NTC

Input: X , Ω,
{
U

(i)
0

}N

i=1
, λ, R, {t(i)0 }Ni=1.

1 k = 0
2 while (1) do
3 for i = 1, 2, . . . N do
4 (U

(i)
k+1, t

(i)
k+1) =

S NMLSME
(
X(i),M(i),K

(i)
k ,U

(i)
k , λ, t

(i)
k

)
5 if (term cond is TRUE) then break; endif
6 k = k + 1

7 return
{
U

(i)
k

}N

i=1
.
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Fig. 1: Relative tensor estimation error vs elapsed CPU time
for synthetic data.

D. Parallel Implementation

We use the same parallel multi-threaded implementation, via
OpenMP, of Algorithm 1 as presented in [19]. In a nutshell,
the update of each row in lines 5− 10 of Algorithm 1, can be
computed separately by each available thread.

IV. AO ACCELERATED STOCHASTIC NTC

To solve the NTC problem using our accelerated stochastic
algorithm, we start from initial values U

(1)
0 , . . . ,U

(N)
0 and

solve, in a circular manner, NMLSME problems, based on the
previous estimates. We define

K
(i)
k =

(
U

(N)
k ⊙ · · · ⊙U

(i+1)
k ⊙U

(i−1)
k+1 ⊙ · · · ⊙U

(1)
k+1

)
,

where k denotes the k–th AO iteration. The update of U
(i)
k

and t
(i)
k is attained by the function call

S NMLSME(X(i),M(i),K
(i)
k ,U

(i)
k , λ, t

(i)
k ).

The Stochastic NTC algorithm appears in Algorithm 2.

V. NUMERICAL EXPERIMENTS

In this section, we test the effectiveness of the proposed
step-sizes using both synthetic and real-world data. We denote
as epoch the number of iterations required to access once all
available tensor elements.

In our experiments, we run all algorithms for 100 epochs,
on a multicore shared-memory system using 40 threads. The
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Fig. 2: Relative tensor estimation error vs elapsed CPU time
for Chicago Crime (4D) Dataset (R = 50).
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Fig. 3: Relative tensor estimation error vs elapsed CPU time
for NIPS Dataset (R = 40).

program is executed on a DELL PowerEdge R820 system with
SandyBridge - Intel(R) Xeon(R) CPU E5 - 4650v2 (in total, 16
nodes with 40 cores each at 2.4 GHz) and 512 GB RAM per
node. The matrix operations are implemented using routines
of the C++ library Eigen [20].

In all experiments, we set MAX INNER = 5. That is,
each time we call the function S NMLSME we perform 5
iterations. We set c = 0.2 (20%), γ = 0.1, and δ = 0.5.
Finally, we set λ = 10−4 for the synthetic data and λ = 10−2

for the real-world data. We use the initialization

t
(i)
0,p =

1

L
init,(i)
p

, for p = 1, . . . , P, i = 1, . . . , N, (22)

where L
init,(i)
p is the largest eigenvalue of the Hessian of the

cost function, with respect to the p-th row of the i-th factor in
the first AO iteration of the algorithm. Then, the initial values
of the step-sizes propagate as shown in Line 4 of Algorithm
2.

In our plots, we denote the step-sizes proposed in subsec-
tions III-A, III-B, and III-C, as M1, M2, and M3, respectively.

A. Synthetic Data

We generate the rank-50 tensor X o ∈ R3000×1700×65
+

whose factors have independent and identically distributed
(i.i.d.) elements, drawn from U [0, 1]. The additive noise E
has i.i.d. elements N (0, σ2

N ). The observed incomplete tensor
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X = M⊛ (X o + E) has 5M nonzero elements. The Signal-
to-Noise ratio is defined as

SNR :=
∥M⊛X o∥2F
∥M⊛ E∥2F

.

In Fig. 1, we plot the average, over 5 Monte-Carlo trials,
relative tensor estimation error as a function of the elapsed
CPU time, for R = 50 and SNR = 20dB. We observe that M2
and M3 lead to algorithms which demand much smaller CPU
time than M1. The estimation performance depends on the
acceleration scheme, with Scheme III being the most effective.
M2 is slightly worse than M3, in terms of estimation error.

B. Real-world Data

We first consider the “Chicago Crime” Dataset, where the
data form tensor X ∈ R6186×24×77×32 with 5.3M nonzero
elements,

In Fig. 2, we plot the relative tensor estimation error vs
the elapsed CPU time, for R = 50. We observe that M2
and M3 lead to faster algorithms but attain slightly worse
tensor estimation error than M1. Method M2 with acceleration
scheme II seems the most prominent, in the sense that it attains
slightly worse estimation error than M1, but much faster.

Finally, we consider the “NIPS Publications” Dataset, where
the data form tensor X ∈ R2482×2862×14036×17, with 3.1M
nonzero elements. In Fig. 3, we plot the relative tensor
estimation error vs the elapsed CPU time, for R = 40. In this
case, M2 and M3 lead to faster algorithms but also achieve
better estimation error than M1. Again, M2 with acceleration
scheme II seems the most prominent method.

VI. CONCLUSION

We considered the NTC problem. We adopted the AO
concept and updated each factor by using a stochastic variant
of the accelerated gradient descent. Motivated by previous
works in related contexts, we proposed step-size strategies
for the stochastic gradient steps for the solution of NMLSME
problems. We tested the data reconstruction effectiveness as
well as the convergence speed of our proposals using both
synthetic and real-world data.
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