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1IRAP, Université de Toulouse, UPS, CNRS, CNES, 14 Av. Edouard Belin, 31400 Toulouse, France
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Abstract—This paper addresses the problem of spectra decon-
tamination in slitless spectroscopy in the context of the Euclid
space mission. This problem can be treated as a source separation
problem which consists of estimating a set of unknown sources
from a set of their mixtures. We first present a mixing model
linking observed data to source spectra that simultaneously takes
into account four light dispersion directions of the grism, then
we propose two methods to decontaminate the spectra from
the mixed data. Exploitation of all these dispersion directions
improves the estimation of the spectrum of an object of interest.
Preliminary results obtained using realistic noisy data show the
effectiveness of the proposed methods.

Index Terms—Source separation, Euclid mission, Data concate-
nation, MPDR beamforming, Slitless spectroscopy.

I. INTRODUCTION

Euclid is a space telescope of the European Space Agency
[1], scheduled for launch in 2023. Its main task is to un-
derstand the nature of dark energy and how this energy is
responsible for the increasing acceleration of the Universe
expansion. Euclid will be equipped with a slitless near-infrared
spectrograph that will measure the spectra of more than
50 million galaxies. These spectra will then be analyzed to
estimate the galaxy redshifts, which should help to better
understand how dark energy contributes to this acceleration.
The spectroscopy is performed using several grisms which
are a combination of prisms and diffraction gratings. A grism
differently disperses different wavelengths of the emitted light
in a dispersion direction (similar to a rainbow effect). Since
an object usually extends over several pixels, the grism output
is an image with several rows, which will be hereafter called
spectrogram1. The 1-dimensional spectrum of the object may
e.g. be obtained by summing up the rows of its spectrogram.
However, as shown in Figure 1, the slitless spectroscopy
used in Euclid leads to the superposition of spectrograms of
neighboring astronomical objects (galaxies and stars), which
could lead to redshift measurement errors and uncertainties
[2].

This work has been partially funded by CNES (Centre National d’Etudes
Spatiales, France).

1Astronomers call it a spectrogram because it is generated by an optical
spectrograph. It should not be confused with the spectrogram resulting from
the time-frequency analysis of a signal.
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Fig. 1. Contamination of neighboring object spectra.

In order to overcome this problem, several spectrograms will
be generated in different dispersion directions. As a result, the
spectrum of an object of interest is contaminated by different
spectra in different directions. Then, the exploitation of all
these directions helps to better estimate the spectrum of the
object of interest.

Spectra decontamination in slitless spectroscopy can be
viewed as a source separation problem that consists of es-
timating a set of unknown signals, called sources, from a
set of their mixtures [3]–[5]. Indeed, we showed in [6]–[8]
that under certain assumptions, the contaminated spectrogram
of an object of interest in each dispersion direction of the
grism can be approximated by a linear instantaneous model.
Unfortunately, most spectra are not mutually independent or
sparse. Therefore, the blind source separation methods based
on independent component analysis or sparse component
analysis cannot be used. We proposed in [6], [7] a blind
method based on Non-negative Matrix Factorization (NMF)
[9]–[11] to decontaminate the spectra, by only considering the
spectrograms corresponding to the two dispersion directions
0 and 90 degrees. However, the Euclid consortium recently
adopted another observation strategy which excludes the use of
a grism in the 90 degree direction. The new strategy consists of
generating spectrograms in four dispersion directions, namely
0, 180, 184 and −4 degrees. As a result, our previous proposed
methods are no longer applicable to this new strategy. More-
over, it is well known that the NMF-based methods are very
sensitive to initialization and do not guarantee the uniqueness
of the solution, which is primary in a space project like Euclid.
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In this paper, we propose two new methods exploiting spectral
data provided in these 4 directions, together with direct images
provided by the Euclid near infrared photometers. At first,
the direct images are used to get an estimate of the mixing
coefficients, then the spectrum of the object of interest is
estimated from them and observed contaminated spectrograms.

II. PROPOSED METHODS

A. Mixing model

We have shown in [6] that for each dispersion direction of
the grism, denoted di, the noiseless mixture containing the
contaminated spectrogram of an object of interest (i.e. the
target object to be decontaminated) can be approximated by a
linear instantaneous model of the form:

X(di) = A(i) ·E(i) +C(i), (1)

where X(di) is the matrix of size Mi × K containing the
observed data, with Mi the number of rows in the cross-
dispersion direction associated to spectrogram of the object
of interest and K the number of spectral bands considered
identical for all dispersion directions. A(i) =

[
a
(i)
s |A(i)

c

]
is

the mixing matrix of size Mi × (Ni + 1), defined by:
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where Ni is the number of the considered contaminant objects
in direction di, a

(i)
s (m) and a

(i)
cn (m), (m,n) ∈ [1,Mi]×[1, Ni],

are respectively the mixing coefficients of the object of in-
terest, constituting the vector a

(i)
s = [a

(i)
s (1), ..., a

(i)
s (Mi)]

T ,
and the contaminants constituting the matrix A

(i)
c . E(i) is the

source matrix of size (Ni+1)×K whose first row corresponds
to the spectrum of the object of interest, whereas its other rows
contain 1D spectra of the contaminating objects in direction
di. C(i) is a known matrix which corresponds to the sky
background that we do not consider in this work since it will be
subtracted from the observations before estimating the spectra.

As mentioned in Section I, for each object of interest we
have four observations for the four dispersion directions (0,
180, 184, and −4 degrees). Assuming that the spectrum of
the object of interest is the same whatever the dispersion
direction, we can merge these four observations in order to
improve the estimation of the spectrum of this object. We
therefore redefine the observation matrix X of an object
of interest, whose spectrum we want to decontaminate, by

merging its contaminated spectrograms in the four directions
in the following manner2:

X =


X(d1)

X(d2)

X(d3)

X(d4)

 =


X(0)

X(180)

X(184)

X(−4)

 = A ·E, (3)

where A = [as|Ac] is the total mixing matrix of size M ×
(N+1), with M =

∑4
i=1 Mi, N =

∑4
i=1 Ni, as is the mixing

vector corresponding to the object of interest, defined by :

as = [a(1)
T

s ,a(2)
T

s ,a(3)
T

s ,a(4)
T

s ]T , (4)

and Ac is the contaminant mixing matrix. Assuming that the
contaminants in each dispersion direction are distinct, this
matrix can then be defined by :

Ac =


A

(1)
c 0 0 0

0 A
(2)
c 0 0

0 0 A
(3)
c 0

0 0 0 A
(4)
c

 . (5)

E is the matrix of size (N + 1)×K containing the spectrum
of the object of interest in its first row, and the contaminants
in each of the four directions in the following rows.

In the next two subsections, we will present two methods
that can be used to estimate the spectrum of the object
of interest by exploiting the observation matrix X and the
information available on the objects.

B. First method

The first step of this method is to estimate the total mixing
matrix A using the direct photometric image of the object of
interest and those of its contaminants. Indeed, Euclid is also
equipped with a photometer which provides direct images of
all astronomical objects in the field of view [2]. As can be
seen in Figure 1, the direct image flux is dispersed by a grism
to produce its spectrogram. As a result, for each dispersion
direction, the mixing coefficients (a(i)s (m) or a(i)cn (m)) related
to an object (target or contaminant) may be estimated by
calculating the sum of pixels on different rows of its direct
image, which will allow us to estimate the total mixing matrix
A. To estimate these coefficients, we first oversample the
photometric image of each object (target or contaminant) in the
cross-dispersion direction, then recentre it in its spectrogram,
and finally undersample it by the same sampling rate. This
allows us to correct the offset between the photometric image
and the spectrogram of this object. After this preprocessing,
we choose the Mi × R pixel values of the image centred on
the position of the object of interest, where R is the number
of columns in the direct image. Then, the sum of the pixels
on the m-th row provides the value a

(i)
s (m) or a(i)cn (m) of this

object. This process is shown in Figure 2. The mixing matrix
A is then constructed using the calculated coefficients.

2Note that before combining the spectrograms of the 4 directions, it is
necessary to rotate the contaminated spectra X(180), X(184) and X(−4)

respectively by rotations of 180, 184 and −4 degrees.
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Fig. 2. Mixing coefficient estimation using photometric images.

After constructing the mixing matrix A, a first solution
to estimate the source matrix E consists of minimizing the
following criterion, where ||.||2 stands for the Frobenius norm:

J1 = ||X−AE||22, (6)

which leads to the following Least SQuares (LSQ) estimate:

E = (ATA)−1ATX. (7)

A second solution to estimate E consists of using the Non-
Negative Least SQuares (NNLSQ) method presented in [12].
Indeed, since the spectra to be estimated are by definition non-
negative, this method takes into account this non-negativity
through the minimization of the criterion.:

J2 = ||X−AE||22 s.t. E ≥ 0 (8)

where E ≥ 0 means that all values of the matrix E are
non-negative. Finally, the spectrum of the object of interest,
denoted Ês, is the first row of the estimated matrix Ê.

C. Second method

Unlike the method presented in Subsection II-B which
requires the direct photometric image of the object of interest
and those of all its contaminants, the method proposed in this
Subsection requires only the image of the object of interest
in order to estimate its spectrum. Indeed, this image makes
it possible to estimate the mixing coefficients a

(i)
s (m) of the

object of interest in all dispersion directions, which will allow
us to estimate the mixing vector as of this object by the same
procedure as described in Subsection II-B. This vector will
then be exploited by a beamformer to estimate the spectrum
of the object of interest. The aim of the beamformer is to
enhance the target object while attenuating interferers and
noise originating from other positions [13], [14]. In this paper,
we are interested in the so-called Minimum Power Distortion-
less Response (MPDR) [14] beamformer. This beamformer
aims at estimating an optimal filter denoted wMPDR, whose
output minimizes the total output power under the constraint
wHas = 1. The desired filter is the solution of the following
minimization problem:

wMPDR = argmin
w

{
wHRXw

}
s.t. wHas = 1, (9)

which leads to the following beamforming coefficients3 [14]:

wMPDR =
R−1X as

aHs R−1X as
, (10)

where RX = XXH/K is the covariance matrix of observa-
tions.

Even though MPDR beamforming can be used directly with
the total observation matrix X to estimate the spectrum of
the object of interest, we here propose to split the observation
matrix X into L parts, where each part denoted Xl includes all
the rows of the matrix X and a set of columns of this matrix,
and then decontaminate each of these parts separately. Indeed,
by adopting this approach, we minimize the risk of falling into
the underdetermined case that MPDR beamforming cannot
handle well [14]. In fact, each contaminant object usually
contaminates only a part of the spectrogram of the target object
(see Figure 1), so that the number of contaminants for each of
the L parts is lower than their number for the entire spectrum.
To do this, we generate L beamformers, each one is given by:

w
(l)
MPDR =

R−1Xl
as

aHs R−1Xl
as

, l ∈ [1, L] (11)

where RXl
is the covariance matrix associated to the l−th

part of the observation matrix X. Finally, the outputs Ê
(l)
s =

w
(l)H
MPDRXl of each beamformer are concatenated to yield the

final estimate of the spectrum of the object of interest as
follows:

Ês = [Ê(1)
s , Ê(2)

s , ..., Ê(L)
s ]. (12)

It should be noted that this second method can attenuate
even unmodeled interference such as undetected object spectra
or hot pixels, and should lead to better results under these
conditions.

III. TEST RESULTS

To evaluate the performance of our methods, we performed
tests on two different scenarios, using realistic simulated ob-
served data, provided by the Euclid consortium. A difference
between the two scenarios concerns the presence or not of hot
pixels. Note that the observed data are also affected by a strong
noise that comes mainly from the acquisition instruments.
To measure the decontamination performance we used as a
criterion the Normalized Root-Mean-Square Error (NRMSE)
before and after decontamination, defined by:

NRMSEin =
1

4

∑
di={0,180,184,−4}

||Es −E
(di)
x ||2

||Es||2
, (13)

NRMSEout =
||Es − Ês||2
||Es||2

, (14)

where E
(di)
x is the 1D spectrum of the observed data in

direction di, Es is the true noiseless spectrum of the object of
interest and Ês its estimate. In (13) and (14), all spectra are

3Note that it is necessary to centre the observation matrix X before
performing beamforming.
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Fig. 3. Observed noisy spectrograms (left) and corresponding 1D spectra
(right) in the first scenario.

centered, and Ês and E
(di)
x are normalized to have the same

variance as Es. In both scenarios, the proposed methods were
compared to the randomly initialized NMF Alternating Least
Square (NMF-ALS) method presented in [15]. In the second
method, the number of beamformers L was set to 3. We choose
observation areas of 5× 504 pixels, 504 corresponding to the
number of wavelengths contained in the spectrogram, and 5
corresponding to the spectrogram width in the cross-dispersion
direction.

A. A simple scenario without hot pixels

In our first experiment, we chose a simple scenario where
the spectrogram of an object of interest (a galaxy with a
redshift of 1.12) is contaminated by the spectra of four objects
in the two directions “0” degree and “180” degree, by the
spectra of two other objects in the “184”degree direction, and
by the spectrum of another object in the “-4” degree direction.
The observed spectrograms and corresponding 1D spectra4

concerning this object are shown in Figure 3.
The true noiseless spectrum of the object of interest and its

estimates using our methods presented in Section II and the
NMF-ALS method after normalization by their maximum are
shown in Figure 4. This figure clearly shows the effectiveness
of the proposed methods in decontaminating the spectrum of
the object of interest. Indeed, our methods successfully remove
all contaminations of other objects in this first scenario. The
NMF-ALS method has rather poor performance as we can
see in Figure 4. The numerical results are shown in Table I.
Note that although the NRMSEout of the proposed methods
seems large in this scenario, the NRMSEin of the observed
data is equal to 10.67, which is much larger compared to those
obtained with our methods. As can be seen, our first method
(using NNLSQ) yields the best results in this scenario.

4The observed 1D spectrum is here defined as the mean of the rows of the
spectrogram.

TABLE I
NRMSE BEFORE AND AFTER THE DECONTAMINATION IN BOTH

SCENARIOS.

Scenario NRMSEin
NRMSEout

LSQ LSQN Second method NMF-ALS
1 10.67 0.90 0.73 0.92 1.19
2 12.74 1.26 1.09 0.97 1.38
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Fig. 4. True noiseless spectrum of the object of interest in the first scenario
and its estimates using the three methods.

B. A complicated scenario with hot pixels

In our second experiment, we chose a complicated scenario
where the spectrogram of an object of interest (a galaxy
with a redshift of 1.41) is contaminated by the spectra of 8
objects in the “0” degree direction, 7 objects in the “180”
degree direction, 3 objects in the “184” degree direction, and
one object in the “-4” degree direction. Moreover, there is
at least one hot pixel in each dispersion direction, which
further complicates this scenario. The observed spectrograms
and corresponding 1D spectra concerning this object are shown
in Figure 5, where the isolated pics in 1D spectra are due to
hot pixels.

Figure 6 shows the true noiseless spectrum of the object of
interest and its estimates using the above-mentioned methods
after normalization by their maximum. As can be seen in
Figure 6, both the first method (using NNLSQ) and the
second one successfully remove contamination of other objects
as well as all hot pixels. The first method (using LSQ) is
also successful in removing contamination from other objects,
however, it is not able to remove all hot pixels. As can be
seen in Table I, our second method yields the best results in
this scenario, which is expected because the second method
should work better in the presence of unmodeled interference
such as hot pixels. Finally, the NMF-ALS method failed
to decontaminate the spectrum of the object of interest in
this scenario, which further confirms the effectiveness of our
proposed methods.
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Fig. 5. Observed noisy spectrograms (left) and corresponding 1D spectra
(right) in the second scenario.
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Fig. 6. True noiseless spectrum of the object of interest in the second scenario
and its estimates using the three methods.

IV. CONCLUSION

In this paper, we proposed two new decontamination
methods that are based on data concatenation between four
dispersion directions of the grism and which are adapted
to Euclid’s new observation strategy. Indeed, exploiting all
these observations allows us to improve the estimation of the
spectrum of the object of interest. According to the results
of the performed tests, the first method yields the best results
(in terms of NRMSE) for objects without hot pixels, while
the second method yields the best results for objects with
hot pixels. Nevertheless, a more complete performance study
would be desirable to confirm this result.

In terms of future work, it would be interesting to replace
the local approach used in this paper, where decontamination is

performed object by object, by a global approach where all the
objects in the field of view are decontaminated at once. Also,
the noise covariance matrix has not been taken into account
in this paper. If available, this matrix can be used to improve
the performance of our two methods. Finally, in our work, we
have adopted the linear-instantaneous mixing model which is
a simple but approximate model. A more realistic convolutive
model can improve the estimation quality.
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