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Abstract—Prediction of annual crop yields at a county granularity
is important for national food production and price stability. In this
paper, towards the goal of better crop yield prediction, leveraging recent
graph signal processing (GSP) tools to exploit spatial correlation among
neighboring counties, we denoise relevant features via graph spectral
filtering that are inputs to a deep learning prediction model. Specifically,
we first construct a combinatorial graph with edge weights that encode
county-to-county similarities in soil and location features via metric
learning. We then denoise features via a maximum a posteriori (MAP)
formulation with a graph Laplacian regularizer (GLR). We focus on
the challenge to estimate the crucial weight parameter µ, trading off
the fidelity term and GLR, that is a function of noise variance in an
unsupervised manner. We first estimate noise variance directly from
noise-corrupted graph signals using a graph clique detection (GCD)
procedure that discovers locally constant regions. We then compute an
optimal µ minimizing an approximate mean square error function via
bias-variance analysis. Experimental results from collected USDA data
show that using denoised features as input, performance of a crop yield
prediction model can be improved noticeably.

Index Terms—Graph spectral filtering, unsupervised learning, bias-
variance analysis, crop yield prediction

I. INTRODUCTION

As weather patterns become more volatile due to unprecedented
climate change, accurate crop yield prediction—forecast of agri-
culture production such as corn or soybean at a county / state
granularity—is increasingly important in agronomics to ensure a
robust and reliable national food supply [1]. A conventional crop
yield prediction scheme gathers relevant features that influence crop
production—e.g., soil composition, precipitation, temperature—as
input to a deep learning (DL) model such as convolutional neural
net (CNN) [2] and long short-term memory (LSTM) [3] to estimate
yield per county / state in a supervised manner. While this is feasible
when the training dataset is sufficiently large, the trained model is
nonetheless susceptible to noise in feature data, typically collected
by USDA from satellite images and farmer surveys1. In this paper,
we focus on the problem of pre-denoising relevant features prior to
DL model training to improve crop yield prediction performance.

Given that basic environmental conditions such as soil makeup,
rainfall and drought index at one county are typically similar to
nearby ones, one would expect crucial features directly related to
crop yields, such as normalized difference vegetation index (NDVI)
and enhanced vegetation index (EVI) [4], at neighboring counties to
be similar as well. To exploit these inter-county similarities for feature
denoising, leveraging recent rapid progress in graph signal process-
ing (GSP) [5], [6] we pursue a graph spectral filtering approach.
While graph signal denoising is now well studied in many contexts,
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1https://www.usda.gov/

Fig. 1: Feature of different counties in Iowa as a discrete signal on a
combinatorial graph.

including general band-limited graph signals [7], 2D images [8], [9],
and 3D point clouds [10], [11], our problem setting for crop feature
denoising is particularly challenging because of its unsupervised
nature. Specifically, an obtained feature y ∈ RN for N counties
is typically noise-corrupted, and one has no access to ground truth
data xo nor knowledge of the noise variance σ2. Thus, the important
weight parameter µ that trades off the fidelity term ∥y−x∥22 against
the graph signal prior such as the graph Laplacian regularizer2 x⊤Lx
[8] or graph total variation (GTV) [12] in a maximum a posteriori
(MAP) formulation cannot be easily derived [13] or trained end-to-
end [9] as previously done.

In this paper, we focus on the unsupervised estimation of the
weight parameter µ in a GLR-regularized MAP formulation for
relevant feature pre-denoising to improve crop yield prediction.
Specifically, we first construct a combinatorial graph G with edge
weights wi,j encoding similarities between counties (nodes) i and
j. wi,j is inversely proportional to the Mahanalobis distance di,j =
(fi − fj)

⊤M(fi − fj), where fi is a vector for node i composed of
soil and location features, and M is an optimized metric matrix [14].
We then estimate noise variance σ2 directly from noise-corrupted
features using our proposed graph clique detection (GCD) procedure,
generalized from noise estimation in 2D imaging [15]. Finally,
we derive equations analyzing the bias-variance tradeoff [13] to
minimize the resulting MSE of our MAP estimate and compute
the optimal weight parameter µ. See Fig. 1 for an illustration of
a similarity graph connecting neighboring counties in Iowa with
undirected edges, where the set of feature values per county is shown
as a discrete signal on top of the graph.

Using USDA corn data from 10 states in the corn belt (Iowa,
Illinois, Indiana, Ohio, Nebraska, Minnesota, Wisconsin, Michigan,

2L is the combinatorial graph Laplacian matrix; definitions are formally
defined in Section III-A.
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Missouri, and Kentucky) containing 938 counties, experimental re-
sults show that using our GLR-regularized denoiser with optimized µ
to denoise two important EVI features led to improved performance
in an DL model [16]: reduction of root mean square error (RMSE)
[17] by 0.434% in crop yield prediction compared to the baseline
when the features were not pre-denoised.

The paper is organized as follows. We first overview our crop yield
prediction model in Section II. We then present our unsupervised
feature denoising algorithm in Section III. Finally, we present exper-
imental results and conclusion in Section IV and V, respectively.

II. PREDICTION FRAMEWORK

We overview a conventional crop yield prediction framework [2],
[3]. First, relevant features at a county level such as silt / clay / sand
percentage in soil, accumulated rainfall, drought index, and growing
degree days (GDD) are collected from various sources, including
USDA and satellite images. Features of the same county are inputted
to a DL model like CNN or LSTM for future yield prediction, trained
in a supervised manner using annual county-level yield data provided
by USDA. Note that existing yield prediction schemes [2], [3] focus
mainly on exploiting temporal correlation (both short-term and long-
term) to predict future crop yields.

Depending on the type of features, the acquired measurements may
be noise-corrupted. This may be due to measurement errors by faulty
mechanical instruments, human errors during farmer surveys, etc.
Given that environmental variables are likely similar in neighboring
counties, one would expect similar basic features in a local region.
To exploit this spatial correlation for feature denoising, we employ
a graph spectral approach to be described next.

III. FEATURE DENOISING

A. Preliminaries

An N -node undirected positive graph G(N , E ,W) can be speci-
fied by a symmetric adjacency matrix W ∈ RN×N , where Wi,j =
wi,j > 0 is the weight of an edge (i, j) ∈ E connecting nodes
i, j ∈ N = {1, . . . , N}, and Wi,j = 0 if there is no edge
(i, j) ̸∈ E . Here we assume there are no self-loops, and thus
Wi,i = 0, ∀i. Diagonal degree matrix D ∈ RN×N has diagonal
entries Di,i =

∑
j Wi,j . We can now define the combinatorial graph

Laplacian matrix L ≜ D−W, which is positive semi-definite (PSD)
for a positive graph G (i.e., Wi,j ≥ 0, ∀i, j) [6].

An assignment of a scalar xi to each graph node i ∈ N composes
a graph signal x ∈ RN . Signal x is smooth with respect to (w.r.t.)
graph G if its variation over G is small. A popular graph smoothness
measure is the graph Laplacian regularizer (GLR) x⊤Lx [8], i.e., x
is smooth iff x⊤Lx is small. Denote by (λi,vi) the i-th eigen-pair of
matrix L, and V the eigen-matrix composed of eigenvectors {vi}Ni=1

as columns. V⊤ is known as the Graph Fourier Transform (GFT) [6]
that converts a graph signal x to its graph frequency representation
α = V⊤x. GLR can be expanded as

x⊤Lx =
∑

(i,j)∈E

wi,j(xi − xj)
2 =

N∑
k=1

λkα
2
k. (1)

Thus, a small GLR means that a connected node pair (i, j) ∈ E with
large edge weight wi,j has similar sample values xi and xj in the
nodal domain, and most signal energy resides in low graph frequency
coefficients αk in the spectral domain—x is a low-pass (LP) signal.

B. Graph Metric Learning

Assuming that each node i ∈ N is endowed with a length-
K feature vector fi ∈ RK , one can compute edge weight wi,j

connecting nodes i and j in G as

wi,j = exp
{
−(fi − fj)

⊤M(fi − fj)
}

(2)

where M ⪰ 0 is a PSD metric matrix that determines the square
Mahalanobis distance (feature distance) di,j = (fi − fj)

⊤M(fi −
fj) ≥ 0 between nodes i and j. There exist metric learning schemes
[14], [18] that optimize M given an objective function f(M) and
training data X = {x1, . . . ,xT }. For example, we can define f(M)
using GLR and seek M by minimizing f(M):

min
M⪰0

f(M) =
T∑

t=1

x⊤
t L(M)xt. (3)

In this paper, we adopt an existing metric learning scheme [14], and
use soil- and location-related features—clay percentage, available
water storage estimate (AWS), soil organic carbon stock estimate
(SOC) and 2D location features—to compose fi ∈ R5. These features
are comparatively noise-free and thus reliable. We use also these
features as training data X to optimize M, resulting in graph G.
(Node pair (i, j) with distance di,j larger than a threshold has no
edge (i, j) ̸∈ E). We will use G to denoise two EVI features that are
important for yield prediction.

C. Denoising Formulation

Given a constructed graph G specified by a graph Laplacian matrix
L, one can denoise a target input feature y ∈ RN using a MAP
formulation regularized by GLR [8]:

min
x

∥y − x∥22 + µx⊤Lx (4)

where µ > 0 is a weight parameter trading off the fidelity term and
GLR. Given L is PSD, objective (4) is convex with a system of linear
equations as solution:

(I+ µL)x∗ = y. (5)

Given that matrix I + µL is symmetric, positive definite (PD) and
sparse, (5) can be solved using conjugate gradient (CG) [19] without
matrix inverse. We focus on the selection of µ in (4) next.

D. Estimating Noise Variance

In our feature denoising scenario, we first estimate the noise
variance σ2 directly from noisy feature (signal) y, using which weight
parameter µ in (4) is computed. We propose a noise estimation
procedure called graph clique detection (GCD) when a graph G
encoded with inter-node similarities is provided.

We generalize from a noise estimation scheme for 2D images [15].
First, we identify locally constant regions (LCRs) Rm where signal
samples are expected to be similar, i.e., xi ≈ xj , ∀i, j ∈ Rm.
Then, we compute mean x̄m = 1

|Rm|
∑

i∈Rm
xi and variance

σ2
m = 1

|Rm|
∑

i∈Rm
(xi − x̄m)2 for each Rm. Finally, we compute

the global noise variance as the weighted average:

σ2 =
∑
m

|Rm|∑
k |Rk|

σ2
m. (6)

The crux thus resides in the identification of LCRs in a graph. Note
that this does not imply conventional graph clustering [20]: grouping
of all graph nodes to two or more non-overlapping sets. There is no
requirement here to put every node in a LCR.
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(a) (b)
Fig. 2: (a) Example of a 10-node graph, where edges with weights
less than threshold ŵ are colored in green; (b) The resulting k-hop
connected graph (KCG) for k = 2, after removing green edges and
creating edges (colored in magenta) by connecting 2-hop neighbors. Two
maximal cliques (out of 5) in KCG are highlighted.

We describe our proposal based on cliques. A clique is a (sub-
)graph where every node is connected with every other node in the
(sub-)graph. Thus, a clique implies a node cluster with strong inter-
node similarities, which we assume is roughly constant. Given an
input graph G, we identify cliques in G as follows.

1) k-hop Connected Graph: We first sort M = |E| edges in G
in weights from smallest to largest. For a given threshold weight ŵ
(to be discussed) and k ∈ Z+, we remove all edges (i, j) ∈ E with
weights wi,j < ŵ and construct a k-hop connected graph (KCG)
G(k) with edges connecting nodes i and j that are k-hop neighbors
in G. If G(k) has at least a target Ê number of edges, then it is a
feasible KCG, with minimum connectivity C(G(k)) = ŵk. C(G(k))
is the weakest possible connection between two connected nodes in
G(k), interpreting edge weights wi,j as conditional probabilities as
done in Gaussian Markov Random Field (GMRF) [21].

To find threshold ŵ for a given k, we seek the largest ŵ for
feasible graphs G(k) (with minimum Ê edges) via binary search
among M edges in complexity O(logM). We initialize k = 1,
compute threshold ŵ, then increment k and repeat the procedure
until we identify a maximal3 C(G(k)) = ŵk for k ∈ {1, 2. . . .}.

See Fig. 2(b) for an example of a KCG G(2) given original graph G
in Fig. 2(a). We see, for example, that edge (3, 10) is removed from
G, but edge (4, 10) is added in G(2) because nodes 4 and 10 are
2-hop neighbors in G. The idea is to identify strongly similar pairs
in original G and connect them with explicit edges in G(k). Then the
maximal cliques4 are discovered using algorithm in [22], as shown
in Fig. 2(b). The cliques in the resulting graph G(k) are LCRs used
to calculate the noise variance via (6).

2) Target Ê Edges: The last issue is the designation of targeted
Ê edges. Ê should be chosen so that each clique m discovered in
KCG G(k) has enough nodes to reliably compute mean x̄m and
variance σ2

m. We estimate Ê as follows. Given input graph G, we
first compute the average degree d̄. Then, we target a given clique to
have an average of nc nodes—large enough to reliably compute mean
and variance. Thus, the average degree of the resulting graph can be
approximated as d̄+nc−1. Finally, we compute Ê ≈ N(d̄+nc−1),
where N is the number of nodes in the input graph G.

E. Deriving Weight Parameter

Having estimated a noise variance σ2, we now derive the opti-
mal weight parameter µ for MAP formulation (4). Following the

3Given 0 < ŵ < 1, ŵk becomes smaller as k increases. Thus, in practice
we observe a local maximum in C(G(k)) as function of k.

4A maximal clique is a clique that cannot be extended by including one
more adjacent node. Hence, a maximal clique is not a sub-set of a larger
clique in the graph.

Fig. 3: Bias B(µ), variance V (µ), and MSE(µ), as functions of weight
parameter µ, for a signal with respect to a graph constructed in Sec-
tion III-B. The underlying graph is constructed by connecting adjacent
counties in Iowa. Graph signal xo is the clay percentages in each county.
We assume σ2 = 1 when computing B(µ), V (µ), and MSE(µ) in (7).

(a) (b)
Fig. 4: (a) Modeling λi’s as an exponentially increasing function f(i);
(b) modeling α2

i as an exponentially decreasing function g(i).

derivation in [13], given σ2, the mean square error (MSE) of the
MAP estimate x∗ from (4) computed using ground truth signal xo

as function of µ is

MSE(µ) =
N∑
i=2

ψ2
i (v

⊤
i xo)2︸ ︷︷ ︸

B(µ)

+σ2
N∑
i=1

ϕ2
i︸ ︷︷ ︸

V (µ)

(7)

where ψi = 1

1+ 1
µλi

and ϕi = 1
1+µλi

. The first term B(µ)

corresponds to the bias of estimate x∗, which is a differentiable,
concave and monotonically increasing function of µ > 0. In contrast,
the second term V (µ) corresponds to the variance of x∗, and is a
differentiable, convex monotonically decreasing function of µ > 0.
When combined, MSE is a differentiable and provably pseudo-convex
function of µ > 0 [23], i.e.,

∇MSE(µ1) · (µ2 − µ1) ≥ 0 → MSE(µ2) ≥ MSE(µ1), (8)

∀µ1, µ2 > 0. See Fig. 3 for an example of bias B(µ), variance
V (µ) and MSE(µ) for a specific graph signal xo and a graph G,
and Appendix A for a proof of pseudo-convexity.

In [13], the authors derived a corollary where MSE(µ) in (7) is
replaced by a convex upper bound MSE+(µ) that is more easily
computable. The optimal µ is then computed by minimizing the
convex function MSE+(µ) using conventional optimization methods.
However, this upper bound is too loose in practice to be useful.

Instead, we take an alternative approach: we approximate (7)
by modeling the distributions of eigenvalues λi’s of L and signal
energies α2

i = (v⊤
i xo)2 at graph frequencies i as follows. We model

λi’s as an exponentially increasing function f(i), and model α2
i as

an exponentially decreasing function g (i), namely

λi ≈ f(i) = q exp{γi}; α2
i ≈ g(i) = r exp{−θi}, (9)
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(a) (b)
Fig. 5: Feature importance for (a) EVI_June and (b) EVI_July.

(a) (b)
Fig. 6: Correlation coefficient between denoised EVI feature ((a)
EVI_June; (b) EVI_July) and the crop yield feature.

where q, γ, r, θ are parameters. See Fig. 4 for illustrations of both
approximations. To compute those parameters, we first compute
extreme eigen-pairs (λi,vi) for i ∈ {2, N} in linear time using
LOBPCG [24]. Hence we have following expressions from (9),

λ2 ≈ q exp{2γ}; λN ≈ q exp{Nγ},
α2
2 ≈ r exp{−2θ}; α2

N ≈ r exp{−Nθ}.
(10)

By solving these equations, one can obtain the four parameters as

γ =
ln λN

λ2

N − 2
; q = λ2 exp

{
−2

ln λN
λ2

N − 2

}
,

θ = −
ln

α2
N

α2
2

N − 2
; r = α2

2 exp

−2
ln

α2
N

α2
2

N − 2

 .

(11)

One can thus approximate MSE in (7) as

MSEa(µ) =
N∑
i=2

g(i)(
1 + 1

µf(i)

)2 + σ2
N∑
i=1

1

(1 + µf(i))2
. (12)

Since MSE in (7) is a differentiable and pseudo-convex function
for µ > 0, MSEa in (12) is also a differentiable and pseudo-convex
function for µ > 0 with its gradient equals to

∇MSEa(µ) =
N∑
i=2

2µg(i)f(i)2 − 2f(i)σ2

(1 + µf(i))3
. (13)

Finally, the optimal µ > 0 is computed by iteratively minimizing the
pseudo-convex function MSEa(µ) using a standard gradient-decent
algorithm:

µ(k) = µ(k−1) − t∇MSEa(µ(k−1)), (14)

where t is the step size and µ(k) is the value of µ at the k-th iteration.
We compute (14) iteratively until convergence.

IV. EXPERIMENTATION

A. Experimental Setup

To test the effectiveness of our proposed feature pre-denoising
algorithm, we conducted the following experiment. We used the corn
yield data at the county level between year 2010 and 2019 provided
by USDA and the National Agricultural Statistics Service5 to predict
yields in 2020. We performed our experiments in 938 counties in
10 states (Iowa, Illinois, Indiana, Kentucky, Michigan, Minnesota,
Missouri, Nebraska, Ohio, Wisconsin) in the corn belt. As discussed
in Section III-B, we used five soil- and location-related features to
compose feature fi ∈ R5 for each county i and metric learning
algorithm in [14] to compute metric matrix M, in order to build
a similarity graph G. For feature denoising, we targeted enhanced
vegetation Index (EVI) for the months of June and July, EVI_June
and EVI_July. In a nutshell, EVI quantifies vegetation greenness
per area based on captured satellite images, and is an important
feature for yield prediction. EVI is noisy for a variety of reasons:
low-resolution satellite images, cloud occlusion, etc. We built a DL
model for yield prediction based on XGBoost [16] as the baseline,
using which different versions of EVI_June and EVI_July were
injected as input along with other relevant features.

B. Experimental Results

First, we computed the optimum weight parameter µ for both
EVI_June and EVI_July, which was µ = 2.2. Table I shows
the crop yield prediction performance using noisy features versus
denoised features with different weight parameters, under three met-
rics in the yield prediction literature: root-mean-square error (RMSE),
Mean Absolute Error (MAE) and R2 score (larger the better) [17].
Results in Table I demonstrate that our optimal weight parameter
(i.e., 2.2) has the best results among other µ values. Specifically, our
denoised features can reduce RMSE by 0.434%.

In addition to the metrics in Table I, we measured the permutation
feature importance [25] for both EVI_June and EVI_July before
and after denoising. Fig. 5 shows that the importance of these features
increases after denoising, demonstrating the positive effects of our
unsupervised feature denoiser. Specifically, the result for the optimal
µ = 2.2 induced the most feature importance.

TABLE I: Performance Metrics with different weight parameters

Metric Original µ = 0.001 µ = 0.01 µ = 2.2
RMSE (bu/ac) 14.139 14.1966 14.2042 14.0776
MAE (bu/ac) 11.225 11.2635 11.2674 10.9839
R2 0.5894 0.5860 0.5856 0.5929

Further, we calculated the correlation between the original / de-
noised feature EVI_June and EVI_July and actual crop yield.
Fig. 6 shows that the denoised features with the optimal µ = 2.2
has the largest correlation with the crop yield feature. In comparison,
using previous method in [13] to estimate µ = 3.35 resulted in a
weaker correlation.

Lastly, to visualize the effect of our denoising algorithm, Fig. 7
shows the yield prediction error for different counties in the 10 states
in the corn belt. We observe that with the exception of a set of
counties in southern Iowa devastated by a rare strong wind event
(called derecho) in 2020, there were very few noticeably large yield
prediction errors.

5https://quickstats.nass.usda.gov/
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Fig. 7: Yield prediction error in all the counties using denoised features

V. CONCLUSION

Conventional crop yield prediction schemes exploit only temporal
correlation to estimate future yields per county given input relevant
features. In contrast, to exploit inherent spatial correlations among
neighboring counties, we perform graph spectral filtering to pre-
denoise input features for a deep learning model prior to network
parameter training. Specifically, we formulate the feature denoising
problem via a MAP formulation with the graph Laplacian regularizer
(GLR). We derive the weight parameter µ trading off the fidelity
term against GLR in two steps. We first estimate noise variance
directly from noisy observations using a graph clique detection
(GCD) procedure that discovers locally constant regions. We then
compute an optimal µ minimizing an MSE objective via bias-variance
analysis. Experiments show that using denoised features as input can
improve a DL models’ crop yield prediction.

APPENDIX A
PROOF OF PSEUDO-CONVEXITY FOR (7)

We rewrite (7)) as

MSE(µ) =
N∑
i=2

µ2λ2
iα

2
i + σ2

(1 + µλi)2
+ σ2, (15)

where α2
i = (v⊤

i xo)2. For simplicity, we only provide the proof for
N = i. In this case, we can write,

∇MSE(µ) =
2µλ2

iα
2
i − 2λiσ

2

(1 + µλi)3
. (16)

Thus, the following expressions follow naturally:

µ ≥
σ2

λiα2
i

> 0 → ∇MSE(µ) ≥ 0;

0 < µ <
σ2

λiα2
i

→ ∇MSE(µ) < 0.

(17)

Further, according to (17), for µ1 ≥ σ2

λiα
2
i
> 0,

(µ2 − µ1) ≥ 0 → (MSE(µ2)− MSE(µ1)) ≥ 0, (18)

and for 0 < µ1 < σ2

λiα
2
i

,

(µ2 − µ1) < 0 → (MSE(µ2)− MSE(µ1)) ≥ 0. (19)

Now, by combining (17), (18), and (19), one can write (8), which
concludes the proof.
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