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Abstract—In this work, we propose a sensing scheme for
the reconstruction of a highly sparse 3D view by a Pulse-
Based Time-of-Flight (PB-ToF) camera aiming at achieving high
angular resolution at interactive rates. The construction of the
sensing matrices is focused on the optimization of the coherence
and the preservation of the low density which characterize
Low-Density Parity-Check (LDPC) codes. We investigate the
possibility of shifting the custom sequences generated at the pixel
level by selecting the shifts which maximize the minimum distance
between adjacent columns, as well as the use of the information
from the two complementary integration channels or taps the ToF
sensor consists of. The signal reconstruction algorithm, coined
greedy bi-lateral fusion, firstly determines a preliminary target
probability distribution, and then re-weights it by exploiting the
local correlations within the pixel array by applying a bi-lateral
filtering which accounts for the affinities in spatial and intensity
domains. The algorithm improves the accuracy of our camera
under presence of strong noise and still preserves the speed and
simplicity associated to classical greedy algorithms.

Index Terms—bi-lateral filtering, coherence, compressive sens-
ing, image reconstruction, time-of-flight

I. INTRODUCTION

Compressive Sensing (CS) [1], [2] has become of vital

importance over the past few decades, especially within the

computer vision and signal processing communities, in the

constant effort of extracting as much meaningful information

as possible without the need of handling and storing a large

volume of data. Over the recent years, many sensing schemes

have been proposed to efficiently scatter the domain under

study and only acquire and store a small amount of not-

redundant data from which information is extracted, by taking

advantage of the intrinsic properties of the signals considered.

However this comes at the cost of more elaborated and

time-consuming reconstruction methodologies. CS exploits the

sparsity and compressibility existing in many natural signals,

i. e., they can be precisely represented by a reduced number

of coefficients in the appropriate domain.

This research is focused on the development of a PB-

ToF imaging system which exploits the fact that most of the

objects that surrounds us, targets in our imaging system, are

confined in narrow regions and the rest of the spatial domain

is empty. In a PB-ToF system a front of light pulses is sent

by a dedicated illumination system, hits an object from the

scene, returns to the camera and is detected by one or some
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of the pixels of the sensor array. In the meantime, a custom

binary sequence is generated at the pixel level. The correlation

between the train of delayed light pulses and each of these

sequences generates a measurement. This operation is repeated

until enough measurements to successfully retrieve the signal

are taken. In order to minimize the acquisitions required and to

reduce the computational cost associated to the reconstruction

of the signal, we explore one of the fundamentals of CS, i. e.,

coherence. The coherence is a measurement of the similarity

between the columns of the sensing matrix and a fundamental

property in most reconstruction, especially greedy, algorithms.

Most greedy algorithms, such as Orthogonal Matching Pursuit

(OMP) [3], share a first step in which a probability distribution

is determined based on the projection of the measurement

vector and its subsequent residuals on the columns of the

sensing matrix. Therefore, each of these columns explains

how targets at different depths contribute to the measurements.

Thus, uniqueness in determining the locations of the target(s)

is related to dissimilitude between columns and, therefore, to

the minimization of the coherence of the sensing matrix. For

the sensing matrices constructed via gradient combinatorial

approach [4], we focused on optimizing the orthogonality

between the columns of the custom (0,1)-binary sequences

and determined an upper bound for the grid discretization

which guaranteed the uniqueness of the columns. In this

work, we investigate the possibility of delaying the sequences,

i. e., shifting the rows of the sensing matrices, to eliminate

very similar columns close to the center of the non-null

elements. The main consequence is the increase of the inter-

column distance, which directly translates into a reduction

of the overall coherence. The impact of these variations on

the reconstruction outcome will be evaluated. Also, we show

that further improvement is possible if we account for the

structure of the sensors. With respect to the recovery of the

signal, we propose an algorithm which starts by determining

a preliminary discrete probability distribution in the depth do-

main and then re-estimate it by exploiting the local correlations

within the pixel array in the spatial and intensity domains. This

will avoid the catastrophic failure which sometimes classical

greedy algorithms suffer under the presence of noise.

II. METHODOLOGY

A. ToF Sensing Scheme

The ToF camera presented in Fig. 1 is based on a rotary

PB-ToF imaging system which exploits the angular motion to
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Fig. 1. ToF camera set-up and sensor model

increase the field of view (FOV), and significantly reduces the

exposure time to avoid the introduction of motion artifacts into

the scene. A detailed description of the ToF camera set-up and

working principle is presented in [4], [5].

Any target detected by the ToF camera, Pi, is provided

in spherical coordinates by the triplet (θPi
, ϕPi

, rPi
). This

triplet is defined with respect to the camera coordinate system

Ox2y2z2 , which follows the translation and rotation of the cam-

era and is placed at the center of the sensor plane. The emitted

signal pr⃗i(t), defined for the vector r⃗i = r⃗(θi, ϕi), interacts

with the scene represented by the Scene Response Function

(SRF) defined in (1), where δ(t) and {Γr⃗i [k], τr⃗i [k]}
s−1
k=0 are

the Dirac delta function and the reflectivities and time delays

introduced by s return paths of light [6], [7] defined in t,

respectively.

hr⃗i(t, t
′) =

s−1
∑

k=0

Γr⃗i [k]δ(t− t′ − τr⃗i [k]) (1)

The SRF is a shift-invariant function and the interaction

with the emitted signal can be formulated as the convolution

of both signals rr⃗i(t) = (pr⃗i ∗ hr⃗i)(t). The pixel correlates

between this reflected signal against m controllable shift-

invariant functions
[

Ψr⃗i,j

]m

j=1
(2). Ideally, these functions are

binary codes of n elements, which are further discretized in

Nsteps steps yielding nsamples sub-divisions.

yr⃗i,j(t) = ((pr⃗i ∗ hr⃗i)⊗Ψr⃗i,j)(t), 1 ≤ j ≤ m (2)

Equation (2) is translated to (3), by exploiting cyclic convo-

lution attributes [6]. Firstly, any correlation of energy signals

can be rewritten as a convolution. Thus, we can consider

the overall convolution of the three signals in (2). Secondly,

we can freely re-arrange the terms of the product by taking

advantage of the association law and commutation properties.

yr⃗i,j(t) = ((pr⃗i ⊗Ψr⃗i,j) ∗ hr⃗i)(t), 1 ≤ j ≤ m (3)

Hence, m measurements at t = 0 are originated. This yields

a linear system of equations (4), where y⃗r⃗i = [yr⃗i,j(t = 0)]
m

j=1
is the measurement vector, AAA is the sensing matrix with

AAA =
[

[

alj
]m

j=1

]nsamples

l=1
:= (pr⃗i ⊗ Ψr⃗i,j)(ti), and x⃗r⃗i :=

[hr⃗i(ti)]
nsamples

i=1 is the signal being retrieved.

y⃗r⃗i = AAA · x⃗r⃗i (4)

This system is under-determined, as m ≪ nsamples, and

leads to a constrained ℓ0-minimization problem (5), i. e., to

find the sparsest solution which complies with (4).

ˆ⃗xr⃗i = argmin
x⃗r⃗i

| supp(x⃗)|, subject to: y⃗r⃗i = AAA · x⃗r⃗i (5)

The sensing matrices generated following the gradient-

combinatorial approach [4] optimized the coherence by con-

sidering a combination without repetition of a fixed number

of non-zero elements per column. Then, they prevented the

coincidence of raising and falling edges between adjacent

columns by arranging the columns in a specific order. How-

ever, there existed an upper limit for super-resolution. This

limit was given by the maximum number of sub-divisions of

each binary element which guaranteed µ < 1. We now propose

an extension of this algorithm by introducing an additional

step at the end of the construction of the sensing matrices,

which pushes these limits further, as presented in Algorithm 1.

This operation can be implemented in other types of sensing

matrices also yielding a positive impact on the coherence.

The algorithm introduces the possibility of horizontally

shifting the different rows. The shift is a multiple of the

minimum grid size in the on-grid case and may vary from

the minimum grid size to the width of the initial binary

element. This near-to-optimal construction scheme iteratively

works per row by selecting the shift (if any) which maximizes

the minimum distance between the adjacent columns, since

Algorithm 1: Near-to-optimal sensing matrix construc-

tion for min-max inter-column coherence

Data: AAA, Nsteps

Result: AoptAoptAopt

Initialize: AoptAoptAopt = AAA; kmax = 0; dmax = 0;

for j = 1 : m do

for k = 0 : Nsteps − 1 do
a⃗opt,j = circshift (⃗aj , k);
dmin = min

1≤l≤nsamples−1
∥a⃗l+1

opt − a⃗lopt∥2;

if dmin ≥ dmax then
dmax = dmin; kmax = k;

end

end

a⃗opt,j = circshift (⃗aj , kmax)
end
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Fig. 2. Representation of normalized columns of the sensing matrices on the unit hypersphere on R
3 for Nsteps = 14, and Ndeg = 2

this magnitude is inversely proportional to the coherence of

the sensing matrix. The minimum distance resulting from this

scheme surpasses the ones obtained in other methodologies,

such as uniformly or randomly selected on-grid shifts, as

shown in Fig. 3, where the minimum distances for various grid

resolutions from Nsteps = 2 to 20 are presented. The shifts

introduced make the inter-column distance greater than zero,

and, therefore, allow the resolution of inverse problems which

were not initially solvable, since uniqueness of the columns

of the sensing matrices (µ < 1) [8] could not be ensured.
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Fig. 3. Distance between adjacent columns for m = 14, n = 64, and
Ndeg = 2

Fig. 2 presents the distribution of nsamples points, repre-

senting the normalized columns of the sensing matrix A in

the R
3 space. We aim to cover as much surface of the sphere

as possible by maximizing the inter-column distance. If no

shift is considered, there may exist a severe concentration

of samples in the vicinity of the points representing the

columns of the initial binary matrix due to the pulse-shaped

instrument response function (IRF), pr⃗i(t). When the shifts

are introduced, we observe two beneficial consequences: the

minimum and cumulative distances between adjacent columns

of the sensing matrix are significantly increased and the

samples are more homogeneously distributed over the surface

of the sphere. We now generalize this concept to any R
m

space, Fig. 4 compares the original sensing matrices, the

corresponding normalized Gramian matrices, and histograms

of normalized scalar products between the columns of the

sensing matrices from the gradient-combinatorial approach

to the ones obtained when posterior shifts of the rows are

implemented by considering random, uniform, and near-to-

optimal max-min schemes. Since the coherence of the (0,1)-

binary sensing matrices was initially optimized, the most

coherent regions are confined to several cells at both sides

of the main diagonal. When introducing the shifts, the width

of these regions and the overall coherence are reduced.
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Fig. 4. Optimization of sensing matrices via custom shifting for m = 14,
n = 64, Nsteps = 14, and Ndeg = 2

An additional step to enhance the accuracy during sensing

relies on some prior knowledge of the architecture of the

photo-gate PMD-based ToF sensors [7]. The sensor consists of

two complementary integration channels or taps whose charge

levels are controlled by the signal that controls the pixels,

i. e., the custom codes. Supposing no background light, we

propose to make use of the difference from both integration

channels yielding custom sequences based on (-1,1)-binary

sensing matrices and a reduction of the resulting coherence.
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B. Signal Reconstruction

The ℓ0-minimization problem (5) is generally non-convex

and computationally expensive to solve. There exist three

classical approaches to surpass these limitations: Basis Pursuit

(BP), which relies on the relaxation from ℓ0 to ℓ1-minimization

[9], greedy [3], and thresholding algorithms [10]. We propose

a reconstruction formulation coined greedy bi-lateral fusion

which starts as a classical greedy approach and, then, accounts

for the local correlations within the pixel array, as described in

Algorithm 2, where the weights used for the bi-lateral filtering

respond to (6), being σk and σi the smoothing parameter

in the spatial and intensity domains, respectively. Since the

coherence optimization bounds the spread of eigenvalues of

any support-restricted Gram matrix, the variation of the ℓ2-

norm of the estimate signal and the ℓ2-norm of the residual of

the measurement vector through AAA is bounded. Therefore, the

intensity used in the bi-lateral filtering Î(k,s) with 1 ≤ k ≤ N ,

being N = nrows × ncolumns and 1 ≤ s ≤ smax is

approximated as the residual norm ∥r⃗(k,s)∥2.

w(i, k) = exp

(

−
∥i− k∥22
2 · σk

2
−

∥Îi − Îk∥22
2 · σi

2

)

(6)

The algorithm consists of the following steps:

1) Preliminary estimation of an initial signal support, Γ(k,s)

based on a discrete probability density function g⃗(k,s)

which is composed of the scalar products between the

residuals of the measurement vector r⃗(k,s) and the nor-

malized columns of the sensing matrix a⃗i with 1 ≤ i ≤
nsamples. The likelihood threshold, ε, is calculated using

Otsu’s algorithm [11]. The algorithm divides the set

under study in two classes and searches for the threshold

which maximizes the inter-class variance. Then, Γ
(k,s)
1

is estimated as the entries of g⃗(k,s) ≥ ε. Secondly, Γ
(k,s)
2

is calculated applying a hard thresholding operator HNr

over g⃗(k,s) and preserving only the largest Nr entries.

The refined support Γ(k,s) is obtained as the intersection

of both subsets. The elements which do not belong to

Γ(k,s) are set to zero.

2) Re-calculation of the PDFs by using bi-lateral filtering

[12], [13] which takes into account the local correlations

in amplitude and depth of the pixel k within the neigh-

borhood Ω(k) preliminary specified. Then, the signal

support β(k,s) is re-calculated based on the re-weighted

PDFs and the signal is estimated via support-restricted

least squares.

With the first step we remove the low-correlated noise which

may impact the bi-lateral filtering outcome by preserving the

most correlated columns.With the second step we account for

the information from the neighborhood by considering the

local correlations in the intensity and spatial domains.

III. NUMERICAL RESULTS

We validate the reconstruction scheme by performing nu-

merical simulations over Middlebury dataset 2003 depth and

intensity maps [14]. An arbitrary displacement of the camera

Algorithm 2: Greedy bi-lateral fusion

Data: AAA, y⃗(k), Ω(k), smax, εtol
Result: x⃗(k)

Initialize: s = 0
for k = 1 : N do

Initialize support: β(k,s) = ∅
Initialize estimate: x⃗(k,s) = 0⃗
Initialize residual: r⃗(k,s) = y⃗(k)

end

while (∥β(k,s)∥0 < smax)andandand (∥r⃗(k,s)∥2 < εtol) do
s = s+ 1
for k = 1 : N do

Î(k,s) = ∥r⃗(k,s−1)∥2
g⃗(k,s) = A⊺A⊺A⊺ · r⃗(k,s−1)

Γ
(k,s)
1 =

{

j|
g
(k,s)
j

∥a⃗j∥2
> Otsu

(

g
(k,s)
j

∥a⃗j∥2

)}

Γ
(k,s)
2 = supp

(

HNr

(

g(k,s)
))

Γ(k,s) = Γ
(k,s)
1 ∩ Γ

(k,s)
2

g⃗
(k,s)

Γ
(k,s) = 0

end

for k = 1 : N do

g⃗(k,s) =
∑

i∈Ω(k) g⃗(i,s)·w(i,k)
∑

i∈Ω(k) w(i,k)

jmax = argmax
1≤j≤nsamples

(

g
(k,s)
j

)

Update support: β(k,s) = β(k,s−1) ∪ jmax

Update estimate: x⃗(k,s) = Aβ(k,s)Aβ(k,s)Aβ(k,s)
† · y⃗(k)

Update residual: r⃗(k,s) = y⃗(k) −Aβ(k,s)Aβ(k,s)Aβ(k,s) · x⃗(k,s)

end

end

∆x⃗0 = [0m,−0.1m, 0.2m] is performed with respect to

the initial origin of the coordinate system in the dataset

and m = 14 measurements are taken at two angular poses

θi = −15◦, and 15◦, with FOVh = 30◦. The maximum spatial

range of the ToF camera is rmax = 10m, the grid is divided

in n = 64 elements and each of them is then discretized in

Nsteps sub-divisions. With regards to the IRF, a Gaussian filter

of standard deviation σ = 12ns (3.6m) [6] is applied to the

custom sequences generated in the pixel to obtain a realistic

representation of the measurement functions. Additive White

Gaussian Noise (AWGN) with various levels of Signal-to-

Noise Ratio (SNR) is used to corrupt the m measurements.

The depth reconstruction error is represented by the mean

value of the root mean square errors (RMSE) of each array

of Nrows × Ncolumns signals over Nreal = 12 realizations.

Firstly, we evaluate the correct selection of σi and σk by

performing an exhaustive search of the minimum ℓ2-norm of

the depth recovery error, as shown in Fig. 5. The optimal

parameters do not depend on the grid resolution, since this is

fine enough to ensure no change in the mode of failure during

reconstruction. Then, we evaluate the depth recovery error with

respect to on-grid GT for various grid resolutions, as shown

in Fig. 6, which compares greedy bi-lateral fusion to a well-

1999



SNR=-20dB

0.5 2 4 6 8 10

sigmak

0.5

2

4

6

8

10

s
ig

m
a

i
SNR=-10dB

0.5 2 4 6 8 10

sigma
0 0.05 0.1 k 

0.15

SNR=-15dB

0.5 2 4 6 8 10

sigmak

SNR=-10dB

0.5 2 4 6 8 10

sigmak

0.5

2

4

6

8

10

s
ig

m
a i

SNR=-5dB

0.5 2 4 6 8 10

sigmak

SNR=0dB

0.5 2 4 6 8 10

sigmak
0 0.01 0.02 0.03 0.04 0.05

RSME(m)RMSE(m) Cones Teddy

Fig. 5. Depth reconstruction error for several values of σi and σk and (-1,1)-
binary shifted sequences.

-10 0 10 20 30 40

SNR(dB)

10-5

10-4

10-3

10-2

10-1

100

T
e

d
d

y
 

R
M

S
E

(m
)

-10 0 10 20 30 40

SNR(dB)

-20 -10 0 10 20 30

10-5

10-4

10-3

10-2

10-1

100

C
o

n
e

s
 

R
M

S
E

(m
)

Nsteps=10

-20 -10 0 10 20 30

Nsteps=14

-20 -10 0 10 20 30

Nsteps=18

-10 0 10 20 30 40

SNR(dB)

OMP(-1,1) OMP (0,1) OMP min-max (-1,1) OMP min-max (0,1)

Gbilat (-1,1) Gbilat (0,1) Gbilat min-max (-1,1) Gbilat min-max (0,1)

GbilatGbilat OMP OMPGbilat SNR0
SNR0

OMP
SNR0

Fig. 6. Depth reconstruction error for various levels of noise and grid
resolutions.

SNR=-20dB

200 400 600 800

100

200

300

d
e

p
th

 m
a

p

1.8

1.9

2

depth(m)

100

200

300

in
te

n
s
it
y
 m

a
p

SNR=-15dB

200 400 600 800

100

200

300
1.8

1.9

2

depth(m)

100

200

300

SNR=-10dB

200 400 600 800

100

200

300
1.7

1.8

1.9

2

d
e

p
th

(m
)

1.8

1.9

2

depth(m)

100

200

300

0

50

100

150

200

250

in
te

n
s
it
y
 (

a
.u

.)

200 400 600 800 200 400 600 800 200 400 600 800 

SNR
depth
rec,GT = 43.9dB SNR

depth
rec,GT = 47.1dB SNR

depth
rec,GT = 62.1dB

Fig. 7. Depth and intensity maps for Cones via greedy bi-lateral fusion with
(-1,1)-binary shifted matrices.

SNR=-5dB

200 400 600 800

100

200

300 1.8

1.9

2

depth(m)

200 400 600 800

100

200

300

SNR=-10dB

200 400 600 800

100

200

300

d
e
p
th

 m
a
p

1.8

1.9

2

depth(m)

200 400 600 800

100

200

300

in
te

n
s
it
y
 m

a
p

SNR=0dB

200 400 600 800

100

200

300

1.7

1.8

1.9

2

d
e
p
th

(m
)

1.8

1.9

2

depth(m)

200 400 600 800

100

200

300 50

100

150

200

250

in
te

n
s
it
y
(a

.u
.)

SNR
depth
rec,GT  = 52.7dB SNR

depth
rec,GT  = 62.2dBSNR

depth
rec,GT  = 51.8dB

Fig. 8. Depth and intensity maps for Teddy via greedy bi-lateral fusion with
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known greedy algorithm, such as OMP. We observe three well

differentiated areas in logarithmic scale. Firstly, we observe a

failure region with high reconstruction error towards the left,

caused by the excessive noise in the measurements, followed

by a smoother linear decrease and, finally, an abrupt reduction

of the reconstruction error when exact on-grid reconstruction is

reached. The improvement of accuracy is especially relevant

in the first region, with a reduction of depth reconstruction

error of, at least, one order of magnitude, and decreases

proportionally to the noise level up to a noise threshold,

SNR0=-5 dB for Cones and SNR0=5 dB for Teddy from which

no further improvement is obtained, yielding classical OMP.

Finally, we present the depth and intensity maps for various

noise levels as well as the SNR of the depth maps recovered

with respect to GT, SNRrec,GT
depth , in Fig. 7 and Fig. 8 for Cones

and Teddy, respectively. We observe high SNRrec,GT
depth , even

from very corrupted measurements, and a progressive gain in

the level of detail of the retrieved depth maps as the introduced

noise diminishes.

IV. CONCLUSIONS

In this paper, we thoroughly describe two algorithms to

enhance the accuracy of our PB-ToF camera [4], [5]. This

improvement relies on the optimization of the coherence of

the sensing matrices and the use of the local correlations

within the pixel array during the recovery of the signal. We

show that the optimization of the sensing scheme together with

the bi-lateral filtering produces a net improvement of retrieval

accuracy for very noisy signals. Prospective work includes the

validation of our model with real measurements on the PB-

ToF camera prototype currently being developed at ZESS and

the implementation of alternative reconstruction schemes.
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