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Abstract—The introduction of compressive sensing in wireless
smart transducers can substantially reduce the high impact of
sampling rate on their overall power consumption. Such systems
are often dealing with signals that can be expressed as a sum
of multiple sinusoids, having a frequency-sparse representation.
Although the reconstruction of frequency-sparse signals has been
widely studied and solutions based on greedy and relaxation
methods exist, their performance is degraded in presence of
spectral leakage, which affects the sparse representation of the
signal and consequently, its estimation accuracy. In this paper,
a two-stage optimization approach, named Opti2, is presented
for the reconstruction of frequency-sparse signals that can be
expressed as a sum of multiple real-valued sinusoidal waveforms.
The estimation provided by basis pursuit denoising (BPDN)
sparse optimization is computed in the first stage and used as
initial guess for the second stage, where a non-linear least squares
(NLLS) problem is formulated to improve the estimation of the
signal parameters from undersampled data. Simulation results
demonstrate that the proposed approach outperforms existing
methods in terms of accuracy, showing its robustness to noise
and compression rate.

Index Terms—compressive sampling, frequency-sparse signals,
multiple sinusoids, recovery algorithm, optimization, spectral
leakage.

I. INTRODUCTION

The limited energy resources of wireless smart sensors
have been one of the main restrictions for their extensive
deployment in monitoring and control applications. In order
to minimize the energy consumption in the sensor node, a
sampling strategy based on compressive sensing (CS) can
be used. This can reduce the sampling rate while preserving
the information content of the signal when it has a sparse
expansion. In many applications, the sparse representation is
in the frequency-domain and the energy efficiency of wireless
sensors acquiring such signals can be significantly improved
by using a non-uniform sampler (NUS) [1].

Instead of acquiring N samples of the signal, in a CS
framework a set of M ≪ N measurements is generated
by a linear dimensionality reduction. The sparse represen-
tation can be in terms of a frame or dictionary, meaning
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that the signal can be represented in terms of its largest κ
coefficients without significant loss. Stable recovery of sparse
signals can be guaranteed under certain conditions from just
M = O(κ log(N/κ)) measurements via convex optimization
or iterative greedy algorithms [2]–[4].

Frequency or spectrally sparse signals are sparse with re-
spect to the discrete Fourier transform (DFT) only if they can
be expressed as a superposition of sinusoids with frequencies
appearing in the lattice of those in the DFT. In practice, such
signals are rarely encountered and a DFT frame of redundancy
should be introduced [5], [6]. Several recovery algorithms have
been developed [5]–[9] to improve the performance of the
existing approaches and to extend the recovery guarantees
to redundant and coherent dictionaries. In [5], a coherence
inhibition model is used resulting in the spectral iterative
hard thresholding (SIHT) algorithm that avoids dictionary
elements with high coherence. Alternatively, band-excluded
local optimization orthogonal matching pursuit (BLOOMP)
[7], [8] employs a similar principle to deal with the coherence.
The potential of ℓ1-synthesis for recovery of signals from
undersampled data, which are sparse in a redundant dictionary,
is studied in [6]. In [9], the band-excluded interpolating
subspace pursuit (BISP) algorithm is proposed. It combines the
band exclusion and polar interpolation functions in a greedy
approach to improve the limitations due to the coherence and
the discretization of the frequency parameter space. The polar
interpolation function is based on the continuous basis pursuit
(CBP) technique, proposed in [10], which is combined with
orthogonal matching pursuit (OMP) in [11] to account for
continuous-valued frequency estimates.

Most of the previous techniques have been developed to
address the frequency estimation problem. However, some
applications in communication, power line measurements, con-
dition monitoring, speech and audio processing also require an
accurate estimation of the signal itself, as well as its amplitude
and phase parameters. In vibration monitoring for example,
which allows to prevent equipment failures, the estimation
accuracy of vibrating signal parameters is essential to identify
structural defects before the system reaches a critical state.

The estimation of the parameters of multiple sinusoids have
been widely studied [12]. However this problem requires a
fresh look when the signal should be reconstructed from un-
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dersampled data. A two-stage recovery approach, called Opti2,
is presented in this work to improve the signal estimation
accuracy through the estimation of its parameters. A two-
stage approach has been previously applied in [13] for the
reconstruction of periodic signals, whose spectral content is
harmonically related. In this paper, we focus on the recon-
struction of signals that can be expressed as a sum of multiple
sinusoids with arbitrary frequencies. In the first stage, one
of the sparse reconstruction techniques is employed and used
as input to the second stage, where a nonlinear least squares
optimization problem is formulated to improve the estimation
of the signal’s parameters from compressed measurements.
Experimental results show that the approach here presented
outperforms the previously proposed algorithms for spectrally
sparse signal recovery with a relatively low computational
effort.

II. COMPRESSIVE SENSING FOR MULTIPLE SINUSOIDAL
SIGNALS

Many applications deal with signal models that can be
expressed as a superposition of K real-valued sinusoidal
waveforms, with continuous time representation given by

s(t) =

K∑
k=1

ak sin (2πfkt+ θk) (1)

where ak, fk and θk are the amplitude, frequency and phase
of each sinusoid, respectively. Let us consider s ∈ RN a finite
length discrete representation of the signal (1). Such signals
have a κ-sparse representation in the DFT domain, with κ =
2K, only when the sinusoids have integral frequencies, i.e.
they can be expressed as integer multiples of the frequency
step size δ = fs/N in the DFT basis Ψ ∈ CN , for a given
sampling rate fs. Unfortunately, in the general case of non-
integral frequencies, the DFT coefficients do not present the
same sparsity properties due to the spectral leakage. A popular
solution to this problem is to introduce a redundant DFT frame
or dictionary [5], [6], [8]. Such dictionary corresponds to a
finer discretization of the Fourier representation, which can be
seen as sampling at more closely spaced intervals. The DFT
frame Ψp with redundancy factor p ∈ N contains Np = p ·N
vectors and is defined as

Ψp =
[
e(ω1) e(ω2) . . . e(ωNp

)
]
, (2)

where each column vector e(ω) ∈ CN has elements en(ω) =
1√
N
ejωn, 0 ≤ n ≤ N − 1 and ω ∈ [0, 2π].

Taking advantage of the sparsity property, a CS framework
is used to acquire the signal by a reduced set of M ≪ N
linear measurements of the form

y = Φs+ v = ΦΨpx+ v = Ax+ v, (3)

where Φ is a [M × N ] measurement matrix, A is the
sensing matrix and v accounts for additive white noise in the
measurement process with zero-mean and variance σ2

v . The
vector x ∈ CNp describes the κ-sparse representation of s in
the redundant dictionary Ψp.

Sparse reconstruction methods can recover x, which has a
minimum number of non-zero elements (i.e. ∥x∥0 ≤ κ), via
convex optimization or greedy algorithms, when the sensing
matrix A obeys the Restricted Isometry Property (RIP) and
maximal incoherence between the pairs (Φ,Ψ) is achieved.
One of the most popular reconstruction techniques based
on iterative greedy solutions is OMP [14] due to its low
complexity and easy implementation. On the other hand,
BPDN [15] and linear Bregman iterations (LBI) [16] are some
of the commonly used convex optimization techniques. Those
are based on the ℓ1-norm regularized optimization problem
and variations, for which efficient solvers are available [17].
Although the DFT frame in (2) violates the incoherence
requirements, the recovery guarantees from the compressed
measurements y have been extended to redundant and coher-
ence dictionaries [6]. In addition, the previously mentioned
algorithms for recovering frequency-sparse signals have been
developed to address this issue [5]–[9]. The estimation of
the signal is then feasible from the recovery of its κ-sparse
approximation.

III. OPTI2: SIGNAL RECOVERY APPROACH

The reconstruction of the signal s can be addressed as
a parametric estimation problem, where the parameters of
each sinusoid ak, fk and θk should be estimated from the
reduced set of measurements y. Even though most of the
existing algorithms for sparse reconstruction can find a good
estimation of the signal from its κ-sparse approximation x, a
more refined estimation of the signal’s parameters is needed
in some applications. This is why a two-stage method is here
introduced, that allows for an accurate recovery of the discrete
representation of the signal in (1).

A. Sparse recovery approach

In the first stage, one of the approaches based on the
relaxation of the ℓ0-norm optimization problem is employed.
Although the ℓ1-norm as relaxation of the ℓ0-norm is weaker
in ensuring sparsity, ℓ1-regularized optimization is a convex
problem and admits efficient solution via linear programming
techniques. The ℓ1-regularized optimization is equivalent to
the least absolute shrinkage and selection operator (LASSO)
[18] problem, also referred to as BPDN by the signal pro-
cessing community. Thus, x can be recovered solving the
following minimization problem

x̂1 = min
x

∥y −Ax∥22 + λ ∥x∥1 , (4)

where A = ΦΨp is the sensing matrix and λ ∈ [0,∞] is
the regularization parameter that controls the solution path. A
first estimation of the signal is found by taking the real part
of ŝ1 = Ψpx̂1. Assuming that the number of frequencies K
is known, the support of x̂1, i.e. the set of indexes associated
to its first K non-zero coefficients Sx̂1

= {l : |xl| ≠ 0, l ∈
[1, . . . , Np]}, can be used to obtain a first estimation of the
frequencies f̂1k = lk ·fs/Np, that will be used as initial guess
in the second stage.
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It is worthy to note that in the first stage it is possible to
use either a greedy iterative algorithm or convex optimiza-
tion approach. The performance of the proposed approach is
determined by the accuracy of the first estimation. If the first
estimation of the frequencies completely fails, the second stage
will also deliver poor results. Nevertheless, the existing sparse
recovery techniques can be successfully applied to multiple
frequency estimation problems, as shown in previous studies.

B. NLLS parameters estimation

In the second stage, we aim to optimize the estimation of
fk and the parameters ak and θk by solving a non-linear least
squares optimization problem. Let us consider that signal s
can be expressed as

s =

K∑
k=1

ak sin (2πfkn+ θk) (5)

s =

K∑
k=1

α1k sin(2πfkn) + α2k cos(2πfkn)

s =


sin(2πf1n)
cos(2πf1n)

...
sin(2πfKn)
cos(2πfKn)


T 

α11

α21

...
α1K

α2K

 = H(f)α,

where f = [f1 f2 . . . fK ], n = [0 . . . N − 1] /fs is the
sampling time vector and the elements in α are given by

α1k = ak cos (θk), α2k = ak sin (θk). (6)

To recover s, f and α are to be estimated from the reduced set
of measurements y. This can be done by solving the following
non-linear optimization problem

argmin
f ,α

∥y −HΦ(f)α∥22 (7)

with HΦ(f) = ΦH(f) representing the [M × 2K] matrix
that contains only M out of N samples. The problem of
determining α can be reduced to a linear least-squares fit once
the estimation of the frequencies f̂ are given, which means that

α̂(f) = HΦ(f)
†
y, (8)

where HΦ(f)
† is the Moore-Penrose pseudoinverse. The prob-

lem (7) can be reformulated to obtain a reduced problem
involving only the non-linear parameters f . Then, a second
estimation of the frequencies f̂2k can be calculated by solving

f̂2 = argmin
f

∥∥∥y −HΦ(f)HΦ(f)
†
y
∥∥∥2
2
. (9)

The estimation of α is then found using (8) for the given
f̂2 and the second estimation of the signal is computed as
ŝ2 = H(f̂2)α̂(f̂2). The parameters âk and θ̂k can be estimated
as

âk =
√
α1k

2 + α2k
2, θ̂k = arctan

α2k

α2k
. (10)

Note that the problem in (9) is equivalent to the variable
projection (VP) functional and can be modeled as a separable
NLLS [19]. Then, a VP optimization can be also considered
to solve (9) [20]. The proposed approach is summarized in
Algorithm 1.

Algorithm 1: Opti2
Input: Compressed measurements y, measurement

matrix Φ and redundant frame or dictionary Ψp

Output: Reconstructed signal ŝ
1 A = ΦΨp

2 Find x̂1 using (4) → ŝ1 = Ψpx̂1, f̂1 = Sx̂1
· fs/Np

3 HΦ(f) = ΦH(f) where H(f) is a [N × 2K] matrix of
the form given in (5)

4 Find f̂2 solving (9)

5 α̂(f̂2) = HΦ(f̂2)
†
y

6 ŝ = H(f̂2)α̂(f̂2) or ŝ =
∑K

k=1 âk sin (2πf̂2n+ θ̂k)

with âk and θ̂k given by (10)

IV. SIMULATION RESULTS

In this section, simulation results are presented to evalu-
ate the proposed approach. A set of numerical experiments,
carried out in Matlab programming environment, have been
performed to compare Opti2 with state-of-the-art approaches.
The performance is measured in terms of the mean squared
error (MSE) of the estimated signal ŝ via Monte Carlo (MC)
experiments and averaged over nMC = 100 independent trials.

MSE =
1

nMC

nMC∑
i=1

1

N
∥ŝ− s∥22 . (11)

An observation interval of 50ms and a sampling rate fs =
10 kHz are considered for the simulated data. Discrete signals
of length N = 500 containing K sinusoidal waveforms
are generated. The amplitudes and frequencies are selected
uniformly at random at each experiment between 2V-5V and
200Hz-2 kHz respectively, while the phases are assumed to
be in the interval [0, π]. A DFT frame with redundancy factor
p = 3 is considered. The measurement matrix Φ ∈ RM×N

contains M rows selected at random from the order N
identity matrix to resemble the NUS. This is equivalent to
randomly choosing rows of the redundant Fourier frame as
sensing matrix A, which guarantees that A has small restricted
isometry constants [6], [21]. The reduced set of measurements
y is generated using (3).

Opti2 is compared with state-of-the-art methods to re-
construct sparse signals: BPDN, LBI, SIHT, OMP+CBP,
BLOOMP and BISP. The evaluated approaches aim to recover
the sparse representation x̂, from which the signal is obtained
by ŝ = Ψpx̂. The non-linear optimization problem in (9) is
solved using the built-in Matlab function fminunc, which uses
a Quasi-Newton algorithm. The estimate f̂1 is used as initial
guess. The toolbox [22] is employed for solving (4) and [23],
for the convex problem in CBP. On the other hand, the codes
for the implementation of LBI and BLOOMP are available in
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Fig. 1: Performance comparison of different sparse reconstruction algorithms in terms of the MSE of the estimated signal.

[24] and [25] respectively, while SIHT and BISP can be found
in [26].

Fig. 1 shows the results of a set of experiments, where
the MSE is evaluated in different scenarios. The solid lines
depict algorithms based on convex optimization while the
dashed lines depict the ones based on greedy approaches.
Noisy observations from the measurement model described
in (3) are simulated, where the signal-to-noise ratio (SNR)
is defined as the ratio between the power of the compressed
noiseless measurements and the noise variance σ2

v . A fixed
number of measurements M = 150 and number of sinusoids
K = 4 are considered for the results in Fig. 1a. The SNR is
varied from 0 to 30 dB. It can be observed, that BLOOMP,
OMP+CBP and LBI have comparable performance for SNR
values over 10 dB, where the latter slightly outperforms the
other two. Opti2 outperforms all the evaluated approaches for
the considered SNR region, reducing the MSE of the estimated
signal in the second optimization step and overcoming the
effects caused by the spectral leakage.

For the next experiment, the MSE is evaluated in terms of
the number of measurements M . We set M = βN , where
β ∈ (0, 1] and a range of subsampling ratios β is explored
to verify the compression level that allows for a successful
estimation with noisy measurement (SNR = 20dB) and
signals containing K = 4 sinusoids. The results are shown
in Fig. 1b. Most of the approaches converge to a MSE with
about 20% of compression rate. Opti2 tends to improve its
performance as the number of measurements increases till
approximately 60% of compression rate.

The performance of the recovery techniques in terms of the
number of sinusoids K contained in the signal is studied and
presented in Fig. 1c. A fixed number of measurements M =
150 and SNR = 20dB are considered. From the results in
Fig. 1c, it can be noticed that the accuracy of the reconstructed
signal is reduced as the number of sinusoids in s increases,
where the sparsity of the signal is given by κ = 2K. The
improvement in the signal reconstruction achieved by Opti2
appears to be higher when only few sinusoids are presented.
However, it enhances the signal estimation accuracy for the
considered values of K.

The averaged computation time of the evaluated approaches
in terms of the number of sinusoids is shown in Fig. 2. Unlike
the greedy algorithms, the average runtime of the convex
optimization methods remains fairly constant with increasing
K. In the greedy approaches, the number of required iterations
depends on the sparsity of the signal and consequently, their
execution time increases with K. On the other hand, Opti2’s
average computation time slightly grows with increasing K.
This is due to the increasing dimension of the matrix HΦ(f)
involved in the optimization problem, where K parameters
should be estimated. The computations were performed on
a high-performance computer featuring an ADM Ryzen 9
5950X 16 Core processor.
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Fig. 2: Performance comparison of different reconstruction
algorithms in terms of the average computation time vs K.

A scenario with SNR = 20dB, M = 150 measurements
and K = 5 is considered, where the amplitudes and phases
of the sinusoids are set to 1V and 0 rad, respectively. The
MSE of the estimated signal and corresponding frequencies
are listed in Table I. The MSE of the estimated frequencies
is computed by MSEf = 1

nMC

∑nMC

i=1
1

Kfs
||f̂ − f ||22. For the

multiple frequency estimation problem, Opti2 is outperformed
by LBI, BLOOMP and OMP+CBP. The latter accounts for
continuous frequency values, leading to the best estimation of
the frequencies. On the other hand, Opti2 gives the minimum
MSE for the signal estimation problem.
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TABLE I: MSE of the estimated frequencies and the estimated
signal for each evaluated approach, considering SNR = 20dB

Algorithm MSEf MSE
BPDN 9.9839 0.0232

LBI 1.9967 0.0456
SIHT 88.6154 1.9634

OMP+CBP 0.1602 0.4018
BLOOMP 1.6566 0.0710

BISP 349.6665 0.1460
Opti2 9.9623 0.0110

The experiments in Fig. 3 test the capacity of the evaluated
algorithms to estimate a signal containing two sinusoids, the
frequencies of which lie at a distance △f . The scenario
considers M = 150, SNR = 20dB, f1 = 1435.824Hz and
f2 = f1 + △f , with a1 = a2 = 1V and θ1 = θ2 = 0 rad.
Opti2 can correctly recover signals, containing frequencies
with a minimum separation of 16.6Hz, which is equivalent
to △f = 2.5 · δp, where δp = fs/Np is the frequency step
size of the redundant DFT. For closely spaced frequencies, the
MSE is low due to the short duration of the frame (50ms).
With increasing △f , the non-resolved frequencies lead to an
increase of the MSE. Opti2 is the first that is capable to resolve
the frequencies and thus can reduce the MSE significantly
compared to the other algorithms.
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Fig. 3: Performance comparison of different reconstruction
algorithms in terms of the MSE for signals containing K = 2
sinusoids with △f spaced frequencies.

V. CONCLUSIONS

In this paper, a two-stage reconstruction approach, referred
to as Opti2, is proposed to improve the estimation of signals
that can be expressed as a sum of real-valued sinusoids with
arbitrary frequencies. The estimation provided by one of the
well-established recovery techniques for compressed measure-
ments is used as first estimation, which gets refined in a second
stage by solving a non-linear least squares problem. Simulation
results show that Opti2 outperforms reported techniques used
in spectral compressive sensing, achieving accurate results in
terms of the MSE, without increasing the computation time
considerably.
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