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Abstract—In this paper we present new algorithms for training
reduced-size nonlinear representations in the Kernel Dictionary
Learning (KDL) problem. Standard KDL has the drawback of
a large size of the kernel matrix when the data set is large.
There are several ways of reducing the kernel size, notably
Nyström sampling. We propose here a method more in the spirit
of dictionary learning, where the kernel vectors are obtained with
a trained sparse representation of the input signals. Moreover,
we optimize directly the kernel vectors in the KDL process, using
gradient descent steps. We show with three data sets that our
algorithms are able to provide better representations, despite
using a small number of kernel vectors, and also decrease the
execution time with respect to KDL.

I. INTRODUCTION

Dictionary Learning (DL) is a representation learning
method that aims to find a sparse representation for a set of
signals, Y , represented as a matrix with N columns (signals)
of size m. The representation is achieved by computing a
dictionary D of size m × n and a sparse representation X
of size n × N such that a good approximation Y ≈ DX
is obtained. Most applications with dictionary learning are in
image denoising, inpainting, signal reconstruction, clustering
or classification.

In this paper we present new methods of dictionary learning
that produce sparse representations in both linear and nonlinear
spaces, starting from the Kernel Dictionary Learning (KDL)
idea [1], [2]. In a first approach, this is done in two stages;
a linear representation is built and the resulting optimized
dictionary is used unchanged in the nonlinear space as kernel
vectors during the training procedure. In the second approach,
the kernel vectors are optimized alongside with the nonlinear
representation. The main advantage of this method is the use
of a reduced matrix, D, containing the kernel vectors, which
is also the dictionary in a standard DL problem. By the use
of the reduced matrix, the built-in kernel is smaller and thus
the problem complexity is reduced.

As KDL has a high complexity when N is large (and so
the kernel matrix is large), solutions have been adopted from
other problems where kernels appear. In Large-Scale Kernel
Machines, various kernel enhancement or resizing strategies
have been used, such as Nyström Sampling [3], [4] or Random
Fourier Features (RFF) [5]. The first one computes a rank m̂
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approximation K̂ of the kernel matrix K. The whole proce-
dure consists in approximating the nonlinear mapping function
φ(Y ) with a matrix Ŷ , containing a compressed version of the
original signals. Compared to the original problem, the new
problem no longer requires a high computational cost. The
Random Fourier Features method proposes to map the input
signals to a randomized low-dimensional feature space. More
exactly, the inner product, used in the kernel trick, is replaced
with a randomized map k(x,y) = φ(x)⊤φ(y) = z(x)⊤z(y),
where z : Rm 7→ Rm̂ and m̂ ≪ m. Both methods enable the
use of fast linear methods, which will further use the resulting
features. The use of reduced kernels dates from Support
Vector Machine times, significant contributions being [6], [7],
with applications in classification [8]. Other learning methods
where a reduced kernel appears can be found in [9]. In these
early works, kernel vectors are usually selected (randomly or
with some heuristic) as a subset of input signals. Finally,
there are KDL substitutes like [10], where the nonlinear
transformation is performed by a neural encoder-decoder, with
standard DL on the encoded signals.

The paper is organized as follows. In Section II we review
the standard DL and KDL problems and the most common
algorithm for solving them. In Section III we present our own
contribution, named the Reduced Kernel Dictionary Learning
(RKDL) problem, under three different scenarios, in which the
kernel vectors are: a) the result of a DL problem, solved a pri-
ori; b) optimized together with the other KDL variables, using
gradient descent, with an objective that is directly related to
that of the KDL problem; c) optimized like before, but using a
mixed objective that combines the nonlinear representation of
the signals with the linear representation of the kernel vectors.
The algorithms for b) and c) are new and their representation
error is smaller. Section IV contains the experimental results,
obtained on three public data sets: Digits, MNIST [11] and
CIFAR-10 [12], under the three proposed scenarios.

II. KERNEL DICTIONARY LEARNING

The DL problem is formulated as following

min
D,X

∥Y −DX∥2F
s.t. ∥xℓ∥0 ≤ sx, ℓ = 1 : N

∥dj∥ = 1, j = 1 : n,

(1)

where ∥·∥0 represents the 0-pseudo-norm, sx is the sparsity
level and dj is a column (named also atom) of D.
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The standard dictionary learning problem can be solved by
using simple strategies. In order to overcome the nonconvexity
and the huge dimension of the problem, the most usual opti-
mization procedure iterates two basic steps and is also known
as DL by Alternate Optimization. In this way, the problem
is divided in two subproblems: sparse coding and dictionary
update. By alternating these two stages for a given number
of iterations, good local solutions can be obtained. A simple
iteration consists of computing the sparse representation X ,
using Orthogonal Matching Pursuit (OMP) [13] while the
dictionary D is fixed, and then updating the dictionary atoms
successively while the sparse representation is fixed. There
are several methods of dictionary learning [14], but the one of
interest to us is AK-SVD [15], [16] due to its low complexity
and good performance.

In the DL problem, the input data are modeled through
a linear representation, which in some cases may be seen
as a limitation. In order to overcome this drawback, kernel
representations can be used for a better quantification of
similarities or differences between input vectors.

The kernel representation is an extension to nonlinearity.
We do this by associating to a data vector y ∈ Rm a feature
vector φ(y) ∈ Rm̃, where φ : Rm → Rm̃ is a nonlinear
function. Typically, Mercer kernels are used, which can be
expressed as a scalar product of feature vector functions
k(x,y) = φ(x)⊤φ(y). In the last form, the scalar product can
be replaced with a specific function definition, such as radial
basis function (RBF) k(x,y) = exp(−∥x−y∥2

2

2σ2 ) or polynomial
kernel k(x,y) = (x⊤y + α)β .

The Kernel Dictionary Learning (KDL) [1], [2] problem is

min
A,Z

∥φ(Y )− φ(Y )AZ∥2F
s.t. ∥zℓ∥0 ≤ sz, ℓ = 1 : N

∥φ(Y )aj∥ = 1, j = 1 : n,

(2)

where φ(Y ) represents the nonlinear extension of data and
φ(Y )A is the kernel dictionary, where A is the coefficients
matrix of size N × p. Depending on the used data set, the
problem can be difficult to solve due the large kernel matrix
KY Y = φ(Y )⊤φ(Y ) that results from the trace form of the
objective function. In this case, the problems with large data
sets can involve large volume of memory and long execution
times. The KDL problem can also be solved by alternate
optimization. The sparse representation is computed according
to the Kernel OMP algorithm [1]. The columns of the matrix
A are sequentially updated with an algorithm inspired by AK-
SVD, while the representation matrix X is fixed.

Both algorithms, AK-SVD and Kernel AK-SVD, alongside
with the sparse representation computation are presented in
[14].

III. REDUCED KERNEL DICTIONARY LEARNING

Nonlinear space can extend the horizon of data representa-
tion. However, KDL has disadvantages when the number of
available signals is large. The size of the kernel increases in
proportion to the size of the data. Thus, the problem becomes
more complex from a numerical point of view.

In order to overcome this limitations we use a reduced
space on which the kernel matrix is built. This strategy is
implemented by using as kernel vectors not the full set of
signals, Y , but a smaller set of vectors, D, trained with DL
as a dictionary for linear representations, thus replacing (2)
with

min
A,Z

∥φ(Y )− φ(D)AZ∥2F
s.t. ∥zℓ∥0 ≤ sz, ℓ = 1 : N

∥φ(D)aj∥ = 1, j = 1 : n.

(3)

This problem has two advantages that can be used as
needed. If the number of training signals is very large, a
dictionary with a much smaller number of atoms can be used.
On the other hand, we have problems where the number
of training signals is small or the given signals are not
representative enough for the representation problem. In this
case it is recommended to use large dictionaries. In our work
the case of interest is the first one.

A. Standard Reduced Kernel Dictionary Learning
A first approach to (3) consists of solving it in two steps. In

the first step we design D by solving a DL problem and thus
obtaining a trained dictionary. We call this method RKDL-D,
due the use of matrix D; it was introduced in [17]. Here is a
brief reminder of the atom update step of RKDL-D. (Sparse
representation can be easily derived from Kernel OMP.)

Expressing the objective of (3) in its trace form and isolating
the current atom aj , we can write

Tr

φ⊤(Y )−
∑
i̸=j

zia
⊤
i φ

⊤(D)− zja
⊤
j φ

⊤(D)


φ(Y )− φ(D)

∑
i ̸=j

aiz
⊤
i − φ(D)ajz

⊤
j

 .

We compute the partial derivatives with respect to the current
atom aj

∂ Tr(·)
∂aj

= 2∥zj∥2KDDaj + 2KDDRzj − 2KY Dzj

and the current sparse representation vector zj
∂ Tr(·)
∂zj

= 2a⊤
j KDDajzj + 2R⊤KDDaj − 2KY Daj .

where we have used the notations KY D = K(Y ,D) =

φ(Y )⊤φ(D), KDD = K(D,D) and R =
∑
i̸=j

aiz
⊤
i .

Setting these derivatives to zero, we obtain the optimal atom
(for fixed representation)

aj =
(
∥zj∥22KDD

)−1
(KY D +KDDR)zj (4)

and optimal representation (for fixed atom)

zj =
(
KY D −R⊤KDD

)
aj . (5)

The RKDL-D procedure of updating atoms is summarized
in Algorithm 1. For brevity, we did not use special notations,
but only the signals from Y where aj appears in the repre-
sentation are involved in the computation.
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Algorithm 1: RKDL-D – update step
Data: complementary kernel matrix KDD ∈ Rp×p

partial kernel matrix KY D ∈ RN×p

current kernel dictionary A ∈ RN×n

representation matrix Z ∈ Rn×N

Result: updated kernel dictionary A, representation Z

1 Compute sum S =

n∑
i=1

Z⊤
i a⊤

i

2 for j = 1 to n do
3 Modify sum: R = S −Zja

⊤
j

4 Update atom:
aj =

(
∥z∥22KDD

)−1
(K⊤

Y D +KDDR)Zj

5 Normalize atom: aj ← aj/
(
a⊤
j KDDaj

) 1
2

6 Update representation: Z⊤
j ← (KY D −RKDD)aj

7 Recompute error: S = R+Zja
⊤
j

B. Optimized Reduced Kernel Dictionary Learning
The improvement that we propose here is to update the

dictionary D, containing the kernel vectors, during the non-
linear optimization procedure. We keep the idea of alternate
optimization. The matrices Z, A and D are updated succes-
sively. As above, for Z we use Kernel OMP and the atoms
of A are updated as described by Algorithm 1. Updating
the dictionary D must be done with a different procedure,
detailed below. Since the dictionary D is updated together
with the nonlinear representation, we call the resulting method
Optimized Reduced Kernel Dictionary Learning (ORKDL-D).

In order to solve the optimization problem for D, we update
each column dj independently, by the use of the trace form
of the objective function of (3):

Tr
[
KY Y − 2KY DAZ +Z⊤A⊤KDDAZ

]
.

We compute the partial derivatives with respect to the ith
element of the current column dj , for both nonlinear terms

∂ Tr[KY DAZ]
∂dij

=Tr

[(
∂ Tr[KY DAZ]

∂KY D

)⊤
· ∂KY D

∂dij

]
=Tr

[
AZ · ∂KY D

∂dij

]
and

∂ Tr[Z⊤A⊤KDDAZ]
∂dij

=Tr

[(
∂ Tr[Z⊤A⊤KDDAZ]

∂KDD

)⊤

· ∂KDD

∂dij

]
=Tr

[
AZZ⊤A⊤ · ∂KDD

∂dij

]
.

The two partial derivatives of kernel matrices with respect
to the current atom are sparse matrices with non-zero columns
or rows only where their index is equal to the index of the
current atom. The two matrices are computed as follows:

∂KY D

∂dij
=


0 · · · ∂k(y1,dj)

∂dij
· · · 0

... ∂k(y2,dj)
∂dij

...
...

...
...

0 · · · ∂k(yNdj)
∂dij

· · · 0

 (6)

and

∂KDD

∂dij
=



0 · · · ∂k(d1,dj)
∂dij

· · · 0

0 · · · ∂k(d2,dj)
∂dij

· · · 0
...

...
...

∂k(dj ,d1)
∂dij

· · · ∂k(dj ,dj)
∂dij

· · · ∂k(dj ,dm)
∂dij

...
...

...
0 · · · ∂k(dn,dj)

∂dij
· · · 0


.

(7)
Depending on the kernel function of interest, the partial

derivatives are computed via

∂k (x,y)

∂x
= − exp

−∥x− y∥22
2σ2

(x− y)

σ2

for the radial basis function kernel k(x,y) = exp(
−∥x−y∥2

2

σ2 ),
and

∂k (x,y)

∂x
= β

(
x⊤y + α

)β−1
y

for the polynomial kernel k(x,y) = (x⊤y + α)β .
Since explicit solutions to the optimization problem on dj

do not seem to exist, we update each column dj through gra-
dient descent procedure applied on each element. At gradient
descent iteration ℓ, the next element value is computed via

d
(ℓ+1)
ij = d

(ℓ)
ij − γg

(ℓ)
ij ,

where γ ∈ R+ represents the chosen learning rate and g
(ℓ)
ij is

the gradient

g
(ℓ)
ij = Tr

[
AZ

(
Z⊤A⊤ · ∂KDD

∂dij
− 2 · ∂KY D

∂dij

)]
,

where the matrices (6) and (7) are computed for the dictionary
at iteration ℓ. The update step of the ORKDL-D algorithm
is obtained by introducing a few steps of gradient descent as
described above for updating the dictionary D, after the update
of A described by Algorithm 1.

C. Mixed Optimized Reduced Kernel Dictionary Learning
The previous subsection presents an update procedure for

the kernel vectors D. A possible drawback is that direct
optimization of the objective of (3) may lead to a dictionary D
with weaker representation power for the entire set of signals,
Y . We present here a further improvement. To keep the
representation significance of D, which is a natural property
to require in the context of kernel methods, we introduce
the standard DL objective (1) into the ORKDL-D problem,
obtaining

min
A,Z,D,X

∥φ(Y )− φ(D)AZ∥2F + λ∥Y −DX∥2F
s.t. ∥zℓ∥0 ≤ sz, ℓ = 1 : N

∥φ(D)aj∥ = 1, j = 1 : n
∥xℓ∥0 ≤ sx, ℓ = 1 : N
∥dj∥ = 1, j = 1 : n,

(8)

where λ ∈ R+ is a penalty constant. Since a mixed objective
is proposed, we name this method Mixed Optimized Reduced
Kernel Dictionary Learning (MORKDL-D).
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By following two directions of optimization, we update the
nonlinear representation while conserving the representation
power of the linear space. The current optimization problem
is solved similarly with the previous problems. The update of
a column of D is slightly different. The gradient of the current
atom uses also the partial derivative of the linear term and is

g̃ij = gij − eij

where eij represents the ith element of the vector (Y −DX)·
X⊤

j ; here, X⊤
j is the jth row of X . On the other hand, the

linear sparse representation matrix X is computed with the
OMP algorithm. As before, the nonlinear sparse representation
matrix Z is computed using the Kernel OMP algorithm, since
Z and X can be optimized independently when A and D are
fixed.

IV. EXPERIMENTS

In this section we present the main results obtained with the
proposed methods. We used three different data sets: Digits,
MNIST and CIFAR-10. For each experiment we trained a
kernel dictionary for representing the whole data set or a
subset extracted by its corresponding label. For example, for
the Digits data set we used all the signals during the training
procedure, while for the MNIST and CIFAR-10 data sets we
used signals specific to a selected label. For the MNIST data
set we used label 5, while for the CIFAR-10 data set we used
the first label.

All the algorithms were implemented in Matlab and Python
and were run on a Desktop PC with Ubuntu 20.04 as op-
erating system. The PC has a processor with 16 cores, with
a base frequency of 2.90 GHz (Max Turbo Frequency 4.80
GHz), and 80 GB RAM memory. During the experiments, we
computed the objective function of (3) (we report the values
∥φ(Y )−φ(D)AZ∥F /

√
mN of the error per signal element)

at each iteration and measured the overall execution time. Note
that for MORKDL-D we report the values of the same error,
not of the objective of (8). Of course, for KDL we compute
the objective of (2), which corresponds to the standard case
D = Y . The error and execution time were computed by
the mean on ten different rounds. As kernel function we used
the radial basis function k(x,y) = exp(

−|x−y|22
σ2 ). The kernel

parameters were chosen according to a grid search, and for all
data sets we chose σ = 10. All the algorithms trained a kernel
dictionary A of size p = 20, with sparsity level sz = 4, using
10 iterations. For the reduced methods we initially trained a
dictionary D of size n = 50, having a sparsity level of sx = 5,
with 10 iterations of the AK-SVD algorithm. The dictionary
D dimensions ensures a reduced kernel by having a smaller
number of atoms compared to the number of data signals. For
example, the Digits data set contains N = 5000 signals of size
m = 784, while the MNIST data set consists of approximately
N = 6000 signals of the same size, of the same class. From
the CIFAR-10 data set we used N = 5000 signals, specific to
the interest class, of size m = 1024.

In the ORKDL-D and MORKDL-D algorithms, the dic-
tionary D is updated with three gradient descent iterations.

For each of the three data sets we chose a learning rate
that ensures a smooth decrease of the objective function. We
took γ = 5 · 10−4 for the Digits and MNIST data sets and
γ = 6·10−4 for the CIFAR-10 data set. For all our experiments
we used λ = 1.

For a better visualization of the results, we show the evolu-
tion of the nonlinear error (objective function of (3)) during the
training procedure for each algorithm using the three data sets
Digits (Figure 1), MNIST (Figure 2) and CIFAR-10 (Figure 3).
As we can see, the improvements are visible from iteration two
of training. More results are given in two tables, containing
the value of the error at the last iteration (Table I) and the
execution time (Table II). All the reduced methods achieve a
smaller error compared to the KDL method. At first glance we
notice that very large kernel spaces are not necessary to obtain
good results. The introduction of a small dimensional space is
enough to obtain satisfactory results. For situations where an
improvement of the nonlinear representation space is needed,
several iterations of gradient descent can be run as needed.
According to the results obtained on the three data sets it can
be seen that the biggest advantage of the proposed methods
is the reduction of the execution time. For example, the non-
optimized reduced form obtains an execution time at least six
times shorter than the KDL method. In the problems where
we try to train the kernel space, an additional time will be
introduced (for dictionary D update), but the execution times
are still shorter than those of KDL. For reduced kernel methods
the execution time is reduced by approximately 20-45% with
respect to the KDL problem. All the implementations are
available at https://github.com/denisilie94/rkdl.

Fig. 1. Digits - representation error per iteration

V. CONCLUSIONS

In this paper we have presented a new approach to the
Kernel Dictionary Learning problem by introducing a reduced
kernel and thus obtaining a new algorithm, named RKDL. This
method is suitable for problems with large data sets, where
standard KDL requires large memory sizes and long execution
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Fig. 2. MNIST - representation error per iteration

Fig. 3. CIFAR-10 - representation error per iteration

TABLE I
LAST ERROR VALUE

`````````Algorithm
Data set Digits MNIST CIFAR-10

KDL 1.041 ·10−2 8.081 ·10−3 3.373 ·10−3

RKDL-D 1.026 ·10−2 7.970 ·10−3 3.285 ·10−3

ORKDL-D 1.022 ·10−2 7.859 ·10−3 3.250 ·10−3

MORKDL-D 1.021 ·10−2 7.846 ·10−3 3.238 ·10−3

TABLE II
EXECUTION TIME IN SECONDS

`````````Algorithm
Data set Digits MNIST CIFAR-10

KDL 61.7 92.5 65.1
RKDL-D 9.2 10.9 9.6
ORKDL-D 39.2 48.4 51.6
MORKDL-D 38.9 49 51.4

times. Moreover, we have demonstrated that most of the time
a large representation space for the kernel matrix is not always
needed to obtain satisfactory results. The reduced form of the
kernel is enough to get similar results or even better. Since the
kernel matrix is smaller, the required execution time is also
much shorter.

The RKDL algorithm was presented under three different
forms: standard RKDL-D, optimized RKDL-D and mixed
optimized RKDL-D, the latter two including optimization of
the kernel vectors. All of them obtain competitive results with
the standard KDL problem.
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