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Abstract—With the aim of finding a compact and efficient 

model for compressive sensing (CS) imaging, we sample images 

based on semi-tensor product (STP) and design a deep 

equilibrium (DEQ) neural network. We measure the images and 

produce their initial reconstruction with STP method. The 

results can be refined by deep unrolling methods (DUMs) which 

use architectures borrow insights from iterations of an 

optimization method. Though DUMs have well-defined 

interpretability, a few iterations will make the model takes up 

huge memory space. It is difficult for training and application. 

Inspired by the iterative shrinkage-thresholding algorithm 

(ISTA) and deep equilibrium architecture, we build a deep 

network dubbed as STP-DEQ-Net. It reduces the storage of the 

system from multiple ISTA iteration blocks to only one block. 

The experiments show that the proposed method operates with 

attractive performance compared with competing methods. The 

trained model has trade-offs between reconstruction quality and 

computation. 

Keywords—compressive sensing, semi-tensor product, ISTA, 

deep equilibrium model, image reconstruction 

I. INTRODUCTION 

Compressive sensing (CS) is a signal acquisition and 
reconstruction method [1]–[3]. It reconstructs the original 
signal that is sparse in a transform domain from far fewer 
measurements than required by the Shannon-Nyquist 
sampling theorem [4]. A signal 𝑥 ∈ ℝ𝑁  is sparse in some 
domain if 

 𝑠 = 𝛹𝑥 () 

where 𝛹 ∈ ℝ𝑁×𝑁 is a sparsifying orthonormal basis and the 
number of non-zero elements in 𝑠 ∈ ℝ𝑁 is much less than N 
[3]. According to CS theory, the signal x qualifies for CS and 
can be sampled as 

 𝑦 = 𝛷𝑥 () 

where 𝑦 ∈ ℝ𝑀  is the measurement vector and 𝛷 ∈ ℝ𝑀×𝑁 
(M<N) is a suitable measurement matrix that should satisfy 
the restricted isometry property (RIP) [5]. CS has many 
potential applications, such as radar signal sampling[6], 
cryptosystem [7], magnetic resonance imaging (MRI) [8], 
video sensing [9], and snapshot imaging [10]. 

Since natural images are usually sparse in some domain 
(e.g., frequency domain), in CS-based image compression an 
image can be sampled and compressed by encoding the image 
with linear measurements like in (2). Traditional CS-based 
methods usually formulate signal reconstruction as a convex 
optimization problem [11]. As such, the original image can be 
reconstructed by an iterative optimization technique. 
Although algorithms usually have convergence guarantees, 
the iteration process is computationally expensive. Compared 

to optimization based methods, neural network (NN) based 
reconstruction algorithms have been shown to alleviate the 
computational cost with reasonable performance [12]. NN 
models directly learn the inverse mapping from the 
measurements to the original signals. The measurement 
matrix 𝛷 can also be acquired through training [13]. 

Many NNs have studied CS measurement reconstruction. 
Most of the models work like a black box, which in the sense 
that while they can approximate some function, studying their 
structure won't give insights on the structure of the function 
being approximated. Different from other NNs operating like 
black boxes, optimization-inspired deep unrolling methods 
not only allow for interpretability in its network design, but 
also have excellent performance [14]. Deep unrolling includes 
repeated blocks with identical architectures. Deep unrolling 
methods are flexible since they work by learning, allow for 
structural diversity, and have architectures that simulate a 
fixed number of optimization iterations. However, the number 
of iterations must be small since a large model is difficult to 
train and has higher computational requirements. To simplify 
the structure, deep equilibrium (DEQ) architectures for 
inverse problems use fixed point iteration [15], [16] and only 
needs one iteration structure unlike deep unrolling. Also, the 
computational budget can be set at test time since 
reconstruction accuracy improves consistently with repeated 
application of the fixed-point iteration [16]. 

In the rest of this article, Sec. II presents related work. The 
measurement and initial reconstruction based on STP is 
introduced in Sec. III. ISTA algorithm and the proposed STP-
DEQ-Net are discussed in Sec. IV. Sec. V gives experimental 
results of the proposed model and competing algorithms. 
Finally, conclusions are drawn in Sec. VI. 

II. RELATED WORK 

In [17], [18], STP is adopted and the iteratively re-
weighted least-squares (IRLS) algorithm is used for image CS 
reconstruction. They have reasonable peak signal-to-noise 
ratio (PSNR) and structural similarity index (SSIM) at a high 
sampling rate (SR=M/N), but need many iterations and a 
forward/inverse wavelet transform is used before/after CS. In 
[19], STP is developed into an NN (called STP-Net) for image 
CS. STP-Net efficiently measures an image and provides a 
good initial reconstruction for subsequent models. It works 
like an autoencoder, and its initial value of learnable 
parameters corresponding to the measurement matrix satisfy 
RIP [5]. The data driven learning for the measurement matrix 
allows measurements to have more information even at low 
sampling rate. To reconstruct image details, especially in the 
case of low sampling rate, [20] propose a dual-path attention 
network (DPA-Net) for reconstructing high quality images 
that preserve texture details from the CS measurements. The 
network  is a structure-texture representation model composed 
of a structure path, a texture path and a texture attention 
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module. Usually the performance of a model is greatly 
impacted by the features in the training dataset, the number of 
training samples and the correlation between the training 
samples and target image. In order to cope with this issue, a 
self-supervised Bayesian deep network (SSB-Net) was 
proposed which predicts the target image with uncertainty 
[21]. The uncertainty enables the reconstructed image with 
small mean squared error (MSE) by averaging multiple 
predictions. The model is trained without requiring any 
external training images. A diffractive sensing and complex-
valued reconstruction network (DSCR-Net) is introduced in 
[22]. It employs light diffraction for efficient sampling and 
develops a complex-valued reconstruction network to 
facilitate reconstruction quality. In [23], a sampling and whole 
image denoising network based on generative adversarial 
network (GAN) is proposed (dubbed SWDGAN). A whole 
image dense residual denoising module is applied to remove 
block artifacts and enhance feature representation. To remove 
batch normalization (BN) artifacts, they do not use a BN layer. 
In the sampling process they apply a fully connected network, 
which has a lot of learnable parameters. For textured images, 
their reconstruction is excessively smooth. To improve the 
details, a parallel enhanced structure (PE-Net) is proposed in 
[24]. PE-Net includes a basic network for initial 
reconstruction and an enhanced network that learns details 
from the basic reconstruction and original image. 

The aforementioned network-based CS methods adopt 
either repetitive convolutional or fully connected layers and 
lack a well-defined interpretability. Inspired by the iterative 
shrinkage-thresholding algorithm, ISTA-Net is proposed in 
[25]. ISTA-Net is a deep unrolling method with architecture 
that imitates a fixed number of iterations of traditional 
optimization methods to allow for interpretability in its design 
[14]. The network uses various structures inspired by insights 
of optimization-based methods in the CS domain [25]. ISTA-
Net makes full use of the merits of network-based and 
optimization-based methods, but the number of iterations have 
to be quite small since a large model is difficult to train and 
has significant degradation if repeatedly applying ISTA-Net 
to implement more iterations [16]. 

In this paper, we propose STP-DEQ-Net. We build an 
ISTA iteration block as a DEQ model and connect it with STP-
Net. STP-Net samples and compresses an image along rows 
and columns using semi-tensor product theory [19]. The 
sampling method provides a good initial reconstruction for 
subsequent deep equilibrium model. The model has fewer 
parameters to train and provides a theoretical foundation for 
the designed layer. The learnable parameters are learned end-
to-end. 

III. STP-NET 

For network-based CS methods, block-based compressive 
sensing is widely used to reduce the complexity of CS 
measurement and reconstruction [26], [27]. For example,[20], 
[21], [23]–[25] all divide the original image into small blocks. 
For a large image, operations on small block can greatly 
reduce the number of parameters, which saves computational 
resources and memory usage. Then a fully connected layer can 
be used as measurement matrix for sampling. 

However, block-based reconstruction methods ignore the 
dependence between adjacent blocks. The methods are usually 
plagued with serious blocking artifacts in the reconstruction, 
requiring additional denoisers [23]. STP-Net bypasses the 

issue with semi-tensor product theory. 

According to STP theory, a smaller measurement matrix 

𝛷(𝑡) ∈ ℝ𝑀/𝑡×𝑁/𝑡 can be adopted, where t is a shrinkage factor 
that is a common divisor of M and N; 𝑡 < 𝑀 (𝑀, 𝑁, 𝑡, 𝑀/𝑡 and 
𝑁/𝑡 are all positive integers) [18], [28]. It has been proved in 
[18] that if 𝛷(𝑡) satisfies RIP, then the STP between 𝛷(𝑡) ∈
ℝ𝑀/𝑡×𝑁/𝑡  and a sparsifying basis 𝛹 ∈ ℝ𝑁×𝑁  is still RIP. 
Compared with traditional methods, the size of the 
measurement matrix is shrunk by 1/t2. Different values of t 
may cause PSNR to decrease, but the maximum drop is no 
more than 5% [18]. Without partitioning image into blocks 
that introduces block artifacts, it provides good initial 
reconstruction for subsequent networks. 

As shown in Fig. 1, it is visually apparent that the natural 
image in Fig. 1(a) can be sparse in some transform domain 
since Fig. 1(b) only has few white areas in the upper left 
corresponding to large amplitudes. Fig. 1(c) shows the 
measurement of the image along rows using a random matrix. 
After applying a 1D sparsifying basis along the columns, Fig. 
1(d) shows the measurement along rows is still sparse in the 
transform domain since the large amplitudes are at the top. An 
image can be CS measured as (3) and shown in Fig. 2 for STP-
Net.  

 𝑌 = 𝛷1(𝑡) ∙ 𝑋 ∙ 𝛷2(𝑡)𝑇   () 

where 𝑋 ∈ ℝ𝑁×𝑁 is the original image without segmentation 
and vectorization. 𝛷1(𝑡)  and 𝛷2(𝑡)  are the two small 
measurement matrix which can be same. 

For block-based CS methods, an image 𝑋 ∈ ℝ256×256 is 
usually cropped into many blocks, such as with size 33×33 
[20], [21], [25]. The blocks are vectorized as a vector 𝑥 ∈
ℝ1089×1. If sampling rate is 10%, the measurement matrix size 
should be 109×1089. According to STP-Net, there can be two 
measurement matrices with same size 81×256. It only needs 
less than 35% memory space of the former. The two matrices 
can even be the same. So, STP-Net saves space and is easier 
to train.  

IV. PROPOSED STP-DEQ-NET FOR CS 

 In this section, we discuss traditional ISTA optimization 
for image CS reconstruction and the proposed STP-DEQ-Net. 

Fig. 1. Image measurements and sparsity [19]: (a) original image, (b) 1D 

sparsifying basis 𝛹 applied along columns and rows, (c) measure the image 

using random matrix 𝛷, (d) 1D sparsifying basis 𝛹 applied along columns of 

measurement, and (e) measure the image along columns and rows. Sampling 

rate = (81/256)2  10%.  

Image Mea Mea Rec Rec 

256×256         256×81     81×81    256×81   256×256     256×256 

STP-Net 

Measure Reconstruct 

Image 

Fig. 2. STP-Net (Sampling rate 10%) [19]. 
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A. ISTA for CS 

Traditional image CS methods usually reconstruct an 
image by solving the optimization problem 

 𝑥 = arg min
𝑥

1

2
‖𝑦 − 𝛷𝑥‖2

2 + 𝜆‖𝛹𝑥‖1 () 

where 𝑥  is the vectorized original image, 𝑦  is the 
measurements, 𝛹  denotes a sparse transform that is 
encouraged by the ℓ1 -norm, and 𝜆  is a regularization 
parameter.  

ISTA is a first-order proximal method which solves the 
problem by iteration of two steps 

 𝑟(𝑘) = 𝑥(𝑘−1) − 𝜌𝛷𝑇(𝛷𝑥(𝑘−1) − 𝑦) () 

 𝑥(𝑘) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

1

2
‖𝑥 − 𝑟(𝑘)‖

2

2
+ 𝜆‖𝛹𝑥‖1 () 

where 𝑘 is the iteration index and 𝜌 is the step size [25]. 𝑟(𝑘) 
is the immediate reconstruction result along the gradient 

descent direction of data-fidelity term 
1

2
‖𝛷𝑥(𝑘−1) − 𝑦‖

2

2
 and 

𝑥(𝑘) is the output of every ISTA iteration [25]. 

Deep unrolling methods are state-of-the-art schemes that 
solve inverse problems by unrolling a small number of 
iterations of an iterative method, such as ISTA, alternating 
direction method of multipliers (ADMM) [29] and 
approximate message passing (AMP) [30]. It consists of 
several architecturally identical blocks. The number must be 
small since it is apt to run out of memory when training the 
network with more unrolled iterations [16]. 

B. STP-DEQ-Net 

An equilibrium layer is applied in Fig. 3. A DEQ model is 
an approach corresponding to an infinite number of iterations. 
ISTA optimization can be modeled as an infinitely deep 
network with identical layers. For most deep layers the outputs 
actually converge to a fixed point (equilibrium point 𝑧∗) [16] 

 𝑧∗ = 𝑓(𝑧∗, 𝑦) () 

where y is the input injection, 𝑧∗ is input of the equilibrium 
layer, and f is the DEQ function. y is essential because the 
equilibrium point does not depend on 𝑧∗. 

The key points here are computing the equilibrium output 
of the forward path and infer the fixed point of gradients in the 
backward path. Anderson acceleration method is a good 
choice for solving the problem [31]. For the gradients in the 
backward path, we deduce a new desired output, thereby 
producing updated gradients. 

 𝑂̃𝑝 = 𝑂𝑝 − ((
𝜕𝑓(𝑧∗,𝑦)

𝜕𝑧∗ )
𝑇 (𝑂𝑝−𝑂̃𝑝)

𝐵
− 𝑔) 𝐵 () 

where 𝑂̃𝑝 is the new desired output, 𝑂𝑝 is the current output of 

ISTA block, B is mini-batch size, and 𝑔  is the original 
gradients between loss function and output of the equilibrium 

layer. (
𝜕𝑓(𝑧∗,𝑦)

𝜕𝑧∗ )
𝑇 (𝑂𝑝−𝑂̃𝑝)

𝐵
 is the Jacobian-vector product 

which can be done via automatic differentiation tools. Then (8) 
is an implicit function that can be solved with Anderson 
acceleration method. 

Fig. 3 shows the proposed STP-DEQ-Net. 𝑧0 is the output 
of STP-Net which provides initial reconstruction as a starting 

Original

Initial Reconstruct

SSIM:0.84, PSNR:27.79dB

2 Iter (Rk)

SSIM:0.64, PSNR:26.44dB

2 Iter (Xk)

SSIM:0.76, PSNR:27.67dB

4 Iter (Rk)

SSIM:0.83, PSNR:28.42dB

4 Iter (Xk)

SSIM:0.88, PSNR:28.91dB

8 Iter (Rk)

SSIM:0.87, PSNR:29.45dB

8 Iter (Xk)

SSIM:0.90, PSNR:29.76dB

16 Iter (Rk)

SSIM:0.87, PSNR:30.22dB

16 Iter (Xk)

SSIM:0.91, PSNR:30.57dB

32 Iter (Rk)

SSIM:0.88, PSNR:30.76dB

32 Iter (Xk)

SSIM:0.91, PSNR:31.08dB

Fig. 4. Reconstruction results of parrot after specific ISTA iterations in STP-DEQ-Net (Sampling rate=10%) 

𝐹 𝐹̃ 𝑆𝑜𝑓𝑡 

− 

− 

Mea   InitRec  

𝑓(𝑧∗, 𝑦) 

Input injection 𝑦 
Equilibrium layer (ISTA) 

𝑧0 

STP-Net 

−𝜌 𝑧∗ 
 

+ 

+ 

+ 

𝑟(𝑘) Mea       Rec  

STP-Net 

Output1 

Output2 

Output3 
Fig. 3. Deep equilibrium model based on ISTA. 
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point for equilibrium point computing. The loss function 
includes three parts. ISTA includes a sparse transform and its 
inverse transform, whose symmetry is constrained by Output2. 
Output3 and Output1 make the initial reconstruction and the 
output of the model approach to original image. 

V. EXPERIMENTAL RESULTS 

A. Implementation details 

All the experiments are performed on a computer with 
Intel Core i7-8700K CPU, GeForce GTX1080 GPU and 
16GB RAM. We use MATLAB R2020b to implement and train 
the STP-DEQ-Net separately for a range of sampling rates 
(1%, 4%, 10% and 25%). Natural images come from the 
ILSVRC2014 ImageNet dataset [32]. We extracted the central 
256×256 part of each image and converted them to 8-bit 
grayscale. 20k images are selected: 14k for training, 3k for 
validation and 3k for testing. Training used stochastic gradient 
descent with momentum. For comparison, we also use 11 
grayscale images (Set11) [33] during testing. 

B. Proposed structures 

Fig. 2 shows the structure of STP-Net [19]. It does CS 
sampling twice. For example, there is an image with size 
256×256 and the sampling rate is 10%. Firstly, the image is 
measured row by row and every row produce 81 
measurements. The second time the measurements are 
measured again along columns. Every column produce 81 
measurements. So, the total sampling rate is (81/256)2≈10%. 
The inverse process provides the initial reconstruction which 
can be a good choice for the subsequent networks. According 
to CS theory, the measurement operation should be linear, but 

the reconstruction process can be nonlinear. It means if 
convolutional layers are applied to implement the sampling 
process and the reconstruction process, the former should 
have no biases but the latter can contain biases. 

We built STP-ISTA-Net first by connecting STP-Net with 

ISTA-Net. Since (5) has 𝛷𝑇𝛷𝑥(𝑘−1) operation, STP-Net can 
be used repeatedly as measurement and reconstruction for 
each iteration. Our experiments adopt 5 ISTA iterations 
(blocks) and every convolutional layer uses 16 filters (each of 
size 3×3 in our experiments). Comparing with ISTA-Net 
introduced in [25] which has 9 ISTA blocks and every 
convolutional layer has 32 filters, our model is smaller. In Fig. 
3, STP-DEQ-Net is built which only uses 1 ISTA block. 

C. Experimental results 

Fig. 4 shows the reconstructed image (parrot) after specific 
ISTA iterations in STP-DEQ-Net when sampling rate is 10%. 
The first row corresponds to (5) and the second row 
corresponds to (6). The figure shows repeated use of STP-
DEQ-Net can improve the performance, which can also be 

observed in Fig. 5. Whether immediate reconstruction 𝑟(𝑘) or 

output of the ISTA iteration 𝑥(𝑘) , their qualities are all 

improved with more iterations, and the quality of 𝑥(𝑘)  is a 

little better than 𝑟(𝑘). The phenomenon is different with deep 
unrolling methods such as ISTA-Net. The trained ISTA-Net 
could not be repeatedly used to implement more ISTA 
iterations because it will have significant degradation[16]. 

Table I shows the average performance comparison on 
Set11 at different sampling rates for various algorithms. It 
shows STP-ISTA-Net has higher PSNR than other algorithms, 
since STP-Net provides a good initial reconstruction for it. 
Though STP-DEQ-Net has much fewer learnable parameters 
than STP-ISTA-Net, it still has competitive performance. 
PENet shows its high SSIM since it contains a basic network 
and an enhanced network that is specially designed for 
acquiring details. In Table II, the reconstruction results of 
STP-Net display high PSNR and SSIM. This means STP-Net 
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Fig. 5. Performance changes with ISTA iterations in STP-DEQ-Net  

(Sampling rate=10%) 

TABLE II.  AVERAGE SSIM/PSNR COMPARISONS WITH DIFFERENT 

IMAGE CS METHODS ON 3K TESTING IMAGES AND SET11 (SR=10%) 

Algorithm 
3000 testing images Set11 

SSIM PSNR (dB) SSIM PSNR (dB) 

STP-Net 0.7555 26.66 0.7679 26.08 

STP+1 ISTA Block 0.7494 27.05 0.7770 26.77 

STP+5 ISTA Block (Same) 0.7645 27.63 0.8004 27.62 

STP+5 ISTA Block (Diff) 0.7969 28.49 0.8438 29.01 

STP+10 ISTA Block (Diff) 0.7991 28.60 0.8514 29.32 

STP-DEQ-Net (10 Iter.) 0.8005 28.29 0.8294 28.24 

STP-DEQ-Net (25 Iter.) 0.8039 28.35 0.8358 28.45 

STP-DEQ-Net (50 Iter.) 0.8058 28.50 0.8495 28.96 

(Same/Diff: every block has identical/different parameter values. The best 

performance is labeled in bold.) 

 

TABLE I.  AVERAGE PSNR (DB) AND SSIM COMPARISONS ON SET11 AT DIFFERENT SAMPLING RATES 

Algorithm 
SR=1% SR=4% SR=10% SR=25% 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

DPA-Net[20] 18.05 0.5011 23.50 0.7205 26.99 0.8354 31.74 0.9238 

SSB-Net[21] -- -- 23.26 0.7000 27.49 0.8300 32.30 0.9200 

DSCR-Net[22] 19.16 0.4811 22.53 0.6362 26.64 0.8328 29.41 0.9238 

SWDGAN[23] 21.01 0.5410 24.67 0.6410 28.45 0.8570 33.45 0.9300 

PENet[24] 20.74 0.4909 25.19 0.7586 28.58 0.8701 33.23 0.9407 

ISTA-Net+[25] 17.34 0.4131 21.31 0.6240 26.64 0.8036 32.57 0.9237 

STP-Net 20.65 0.5053 23.39 0.6310 26.08 0.7679 30.06 0.8843 

STP-ISTA-Net 21.32 0.5529 25.47 0.7152 29.01 0.8438 33.72 0.9327 

STP-DEQ-Net 21.24 0.5565 24.67 0.7028 28.96 0.8495 32.63 0.9331 

(ISTA-Net+ has 9 ISTA blocks. STP-ISTA-Net has 5 ISTA block. STP-DEQ-Net has 1 ISTA block. The best performance is labeled in bold.) 
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can capture useful information effectively. At the same time, 
though the table shows STP-DEQ-Net has reasonable 
performance with repeated use for multiple ISTA iterations, 
PSNR of the restored images is lower than STP-ISTA-Net 
with 10 ISTA blocks. The number of learnable parameters in 
the former is only one-tenth that in the latter. It confirms that 
a network with more learnable parameters is more powerful 
since STP-DEQ-Net has only one block of ISTA structure. 

VI. CONCLUSION 

Inspired by the ISTA algorithm and DEQ model, we 
present STP-DEQ-Net. The trained model can be repeatedly 
used to implement more iterations and yield a consistent 
improvement in reconstruction quality. It has much fewer 
learnable parameters than other deep unrolling methods but it 
has trade-offs between reconstruction quality and computation. 
The model merges the merits of traditional optimization 
method and novel network method. Compared with other 
network-based CS reconstruction methods, our model is 
simple and the structure has better interpretability.  
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